Mercurial > repos > alvarofaure > bitlab
diff chromeister/bin/compute_score.R @ 0:7fdf47a0bae8 draft
Uploaded
author | alvarofaure |
---|---|
date | Wed, 12 Dec 2018 07:18:40 -0500 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/chromeister/bin/compute_score.R Wed Dec 12 07:18:40 2018 -0500 @@ -0,0 +1,478 @@ + +#!/usr/bin/env Rscript +args = commandArgs(trailingOnly=TRUE) + +if(length(args) < 2){ + stop("USE: Rscript --vanilla plot.R <matrix> <matsize>") +} + + + + + + +growing_regions <- function(mat, reward = 6, penalty = 5, sidePenalty = 3, MAXHSPS = 500, TH = 10, WSIZE = 7){ + + #write(mat, file ="data.txt", ncolumns = 200) + + len <- min(length(mat[1,]), length(mat[,1])) + HSPS <- matrix(0, nrow=MAXHSPS, ncol=5) + idx <- 1 + lH <- round(WSIZE/2) - 1 + rH <- round(WSIZE/2) + 1 + + + #print(paste("lH: ", lH, "rH: ", rH)) + + if(WSIZE %% 2 == 0){ + print("WSIZE MUST BE ODD") + stop() + } + + + + i <- 1 + #readline(prompt="Press [enter] to continue") + while(i < len){ + + value <- max(mat[i,]) * reward + if(value == 0) i <- i + 1 + pos <- which.max(mat[i,]) + # these two hold ending frag + endfrag <- pos + j <- i + count_penalties <- 1 + + #print("-----------------") + + while(value > 0 && j < len){ + + #print(paste("took values ", j, endfrag, "which have score of ", mat[j, endfrag], "current value is: ", value)) + + + + + # Reset position used + + mat[max(1,j-1), max(1,endfrag-2)] <- 0 + mat[max(1,j-1), max(1,endfrag-1)] <- 0 + mat[max(1,j-1), endfrag] <- 0 + mat[max(1,j-1), min(len, endfrag+1)] <- 0 + mat[max(1,j-1), min(len, endfrag+2)] <- 0 + + mat[j, max(1,endfrag-2)] <- 0 + mat[j, max(1,endfrag-1)] <- 0 + mat[j, endfrag] <- 0 + mat[j, min(len, endfrag+1)] <- 0 + mat[j, min(len, endfrag+2)] <- 0 + + #print(paste("Erasing: (",max(1,j-1), max(1,endfrag-2),")(",max(1,j-1), max(1,endfrag-1),")(",max(1,j-1), endfrag, + # ")(",max(1,j-1), min(len, endfrag+1),")(",max(1,j-1), min(len, endfrag+2),")(",j, max(1,endfrag-2), + # ")(",j, max(1,endfrag-1),")(",j, endfrag,")(",j, min(len, endfrag+1),")(",j, min(len, endfrag+2),")")) + + + # Go for next + j <- j + 1 + # Check next, could be reverse or forward + mleft <- max(1, endfrag-lH) + mright <- min(len, endfrag+lH) + window <- mat[j, mleft:mright] + + + #print(paste("mleft: ", mleft, "mright", mright, "j is: ", j)) + #print(window) + + v <- max(window) + selected <- which.max(window) + # Make it rather go diagonally + #print(paste("WIndow len: ", length(window))) + chose_diagonal <- FALSE + if(length(window) == WSIZE && v == window[lH]){ + selected <- lH + chose_diagonal <- TRUE + } + + if(length(window) == WSIZE && v == window[rH]){ + selected <- rH + chose_diagonal <- TRUE + } + + #print(paste("Selected value be like ", selected)) + + + if(v != 0){ + + + + endfrag <- (mleft + selected ) # To make the indexing + if(length(window) == WSIZE) endfrag <- endfrag - 1 + endfrag <- max(1, min(len, endfrag)) + #print(paste("\t", " endfragnew = ", endfrag, "max of window: ", max(window), "on position", which.max(window))) + } + + #print(paste("Chose diagonal is ", chose_diagonal)) + + # If no similarity is found + if(v == 0){ + value <- value - count_penalties * penalty + count_penalties <- count_penalties + 1 + #print("Got penalty #########") + + }else{ + + # Similarity is found + + if(!chose_diagonal){ + value <- value + count_penalties * (-sidePenalty) + count_penalties <- count_penalties + 1 + #print("Got SIDE penalty @@@ #########") + }else{ + count_penalties <- 1 + value <- value + reward + #print("Got reward thou #########") + } + + } + #readline(prompt="Press [enter] to continue") + + } + # Check len of frag + if(j-i > TH){ + # HSPS[idx, 1] <- i + # HSPS[idx, 2] <- pos + # HSPS[idx, 3] <- j + # HSPS[idx, 4] <- endfrag + # HSPS[idx, 5] <- abs(i-j) + + HSPS[idx, 1] <- pos + HSPS[idx, 2] <- i + HSPS[idx, 3] <- endfrag + HSPS[idx, 4] <- j + HSPS[idx, 5] <- abs(i-j) + + + + #print(paste("ACCEPT", i, pos, j, endfrag, "x-y", j-i, abs(endfrag-pos), sep = " ")) + idx <- idx + 1 + }else{ + #print("REJECT") + } + # This will prevent overlappign lines, I think + #i <- j + + if(idx == MAXHSPS) break + } + + + + + return (HSPS) +} + +detect_events <- function(HSPS, sampling){ + + DIAG_SEPARATION <- 10 + # same as HSPS but adding the event + output <- matrix(0, nrow=length(HSPS[,1]), ncol=1+length(HSPS[1,])) + colnames(output) <- c("x1", "y1", "x2", "y2", "len", "event") + j <- 0 + for(i in 1:(length(HSPS[,1]))){ + + if(sum(HSPS[i,]) > 0){ + j <- j + 1 + is_inverted = FALSE + is_diagonal = TRUE + + if(HSPS[i,1] > HSPS[i,3]) is_inverted = TRUE + if(abs(HSPS[i,1] - HSPS[i,2]) > DIAG_SEPARATION && abs(HSPS[i,3] - HSPS[i,4]) > DIAG_SEPARATION) is_diagonal = FALSE + + output[i,1] <- HSPS[i,1] * sampling + output[i,2] <- HSPS[i,2] * sampling + output[i,3] <- HSPS[i,3] * sampling + output[i,4] <- HSPS[i,4] * sampling + output[i,5] <- HSPS[i,5] * sampling + + if(is_diagonal) output[i,6] <- "synteny block" + if(is_diagonal && is_inverted) output[i,6] <- "inversion" + if(!is_diagonal && !is_inverted) output[i,6] <- "transposition" + if(!is_diagonal && is_inverted) output[i,6] <-"inverted transposition" + } + + + } + + return (output[1:j,]) +} + + + +paint_frags <- function(HSPS, l, sampling){ + + plot(c(HSPS[1,1]*sampling, HSPS[1,3]*sampling), c(HSPS[1,2]*sampling, HSPS[1,4]*sampling), xlim = c(1,l*sampling), ylim = c(1,l*sampling), type="l", xlab="X-genome",ylab="Y-genome") + for(i in 2:length(HSPS[,1])){ + if(sum(HSPS[i,]) > 0){ + lines(c(HSPS[i,1]*sampling, HSPS[i,3]*sampling), c(HSPS[i,2]*sampling, HSPS[i,4]*sampling)) + } + } +} + +supersample <- function(mat, upscale){ + l <- min(length(mat[1,]), length(mat[,1])) + size <- round(l*upscale) + m <- matrix(0, nrow=size, ncol=size) + + for(i in 1:size){ + for(j in 1:size){ + mleft <- max(1, i-1) + mright <- min(l, i+1) + mup <- max(1, j-1) + mdown <- min(l, j+1) + + ri <- max(1, i/upscale) + rj <- max(1, j/upscale) + + if(mat[ri, rj] > 0){ + m[i, j] <- 1 + } + } + } + return (m) +} + + +downsample <- function(mat, downscale){ + l <- min(length(mat[1,]), length(mat[,1])) + size <- round(l/downscale) + m <- matrix(0, nrow=size, ncol=size) + + for(i in 1:l){ + for(j in 1:l){ + mup <- max(1, i-1) + mdown <- min(l, i+1) + mleft <- max(1, j-1) + mright <- min(l, j+1) + + #print(paste("Matrix at ", i, j)) + #print(mat[mup:mdown, mleft:mright]) + + if(sum(mat[mup:mdown, mleft:mright]) > 0){ + #print(paste("goes to ", round(i/downscale), round(j/downscale))) + m[round(i/downscale), round(j/downscale)] <- 1 + } + } + } + + return (m) +} + + + + + + + +path_mat = args[1] + + +fancy_name <- strsplit(path_mat, "/") +fancy_name <- (fancy_name[[1]])[length(fancy_name[[1]])] + +# Read sequence lenghts +con <- file(path_mat,"r") +seq_lengths <- readLines(con, n=2) +seq_x_len <- as.numeric(seq_lengths[1]) +seq_y_len <- as.numeric(seq_lengths[2]) +close(con) + + +data <- as.matrix(read.csv(path_mat, sep = " ", skip=2)) + +# Get sequence names +name_x <- strsplit(fancy_name, "-")[[1]][1] +name_y <- strsplit(fancy_name, "-")[[1]][2] + +# Max of columns + +len_i <- as.numeric(args[2]) +len_j <- as.numeric(args[2]) + + +score_density <- data +aux_density <- data + + +pmax_pos <- which.max(aux_density[,1]) +for(i in 1:len_i){ + + cmax_pos <- which.max(aux_density[i,]) # get max of row + + if((aux_density[i,cmax_pos]) > 0){ # if it has value + #row_from_col <- which.max(aux_density[,cmax_pos]) # get max of the column pointed by maximum of row + score_density[i,] <- 0 # put all others in row to 0 i.e. only use this max, EXCEPT for the maximum in the column + #score_density[row_from_col, cmax_pos] <- 1 + score_density[i,cmax_pos] <- 1 + pmax_pos <- cmax_pos + } +} + + +pmax_pos <- which.max(aux_density[1,]) + + +for(i in 1:len_i){ + + cmax_pos <- which.max(aux_density[,i]) # get max of column + + if((aux_density[cmax_pos,i]) > 0){ + score_density[,i] <- 0 + score_density[cmax_pos,i] <- 1 + pmax_pos <- cmax_pos + } +} + + + + + + + + + +score_copy <- score_density +diag_len <- 4 + +for(i in 6:(len_i-5)){ + for(j in 6:(len_j-5)){ + + value <- 0 + for(w in (-diag_len/2):(diag_len/2)){ + if(score_density[i+w,j+w] > 0){ + value <- value + 1 + } + } + + if(value >= diag_len){ + for(k in 1:5){ + score_copy[i+k,j+k] <- 1 + } + for(k in 1:5){ + score_copy[i-k,j-k] <- 1 + } + }else if(score_copy[i,j]==0){ + score_copy[i,j] <- 0 + } + } +} + +for(i in 6:(len_i-5)){ + for(j in 6:(len_j-5)){ + + value <- 0 + for(w in (-diag_len/2):(diag_len/2)){ + if(score_density[i-w,j+w] > 0){ + value <- value + 1 + } + } + + if(value >= diag_len){ + for(k in 1:5){ + score_copy[i-k,j+k] <- 1 + } + for(k in 1:5){ + score_copy[i+k,j-k] <- 1 + } + }else if(score_copy[i,j]==0){ + score_copy[i,j] <- 0 + } + } +} + + +# Kernel to remove single points + +for(i in 1:(length(score_copy[,1]))){ + for(j in 1:(length(score_copy[1,]))){ + + value <- 0 + + min_i <- max(1, i-1) + max_i <- min(len_i, i+1) + min_j <- max(1, j-1) + max_j <- min(len_j, j+1) + + value <- sum(score_copy[min_i:max_i, min_j:max_j]) + + if(value < 2) score_copy[i,j] <- 0 + } +} + +# To compute the score +score <- 0 +pmax_pos <- which.max(score_copy[,1]) +dist_th <- 1.5 +besti <- 1 +bestj <- pmax_pos +dvec1 <- abs(which.max(score_copy[,2]) - which.max(score_copy[,1])) +dvec2 <- abs(which.max(score_copy[,3]) - which.max(score_copy[,2])) +dvec3 <- abs(which.max(score_copy[,4]) - which.max(score_copy[,3])) +for(i in 5:len_i){ + + #print(paste(paste(paste(dvec1, dvec2), dvec3), mean(c(dvec1, dvec2, dvec3)))) + distance <- mean(c(dvec1, dvec2, dvec3)) + + + + dvec1 <- dvec2 + dvec2 <- dvec3 + dvec3 <- abs(which.max(score_copy[,i]) - which.max(score_copy[,i-1])) + + # If there is a 0 or we are too far away just add max distance! + if(distance > dist_th || distance == 0){ + score <- score + len_i + } + +} + + +score <- (score/(len_i^2)) +print(score) + + +sampling_value <- 5 +submat <- downsample(score_copy, sampling_value) +m <- growing_regions((submat), WSIZE = 7, TH = 5, penalty = 15) +events <- detect_events(m, sampling_value) +events <- rbind(events, c(0,0,0,0,0,"Null event")) +write(as.character(c(seq_x_len, seq_y_len)), file=paste(path_mat,".events.txt", sep=""), append = TRUE, sep =",", ncolumns=2) +write(as.character(c("x1", "y1", "x2", "y2", "len", "event")), file=paste(path_mat,".events.txt", sep=""), append = TRUE, sep =",", ncolumns=6) +for(i in 1:length(events[,1])){ + write(as.character(events[i,]), file=paste(path_mat,".events.txt", sep=""), append = TRUE, sep =",", ncolumns=6) +} + + + +coords1 <- round(seq(from=0, to=1, by=0.2)*seq_x_len) +coords2 <- round(seq(from=0, to=1, by=0.2)*seq_y_len) + +final_image <- apply((t(score_copy)), 2, rev) + +png(paste(path_mat, ".filt.png", sep=""), width = length(data[,1]), height = length(data[,1])) +image(t(final_image), col = grey(seq(1, 0, length = 256)), xaxt='n', yaxt='n', main = paste(fancy_name, paste("filt. score=", score)), xlab = name_x, ylab = name_y, axes = FALSE) +axis(1, tick = TRUE, labels = (coords1), at = c(0.0, 0.2, 0.4, 0.6, 0.8, 1)) +axis(2, tick = TRUE, labels = rev(coords2), at = c(0.0, 0.2, 0.4, 0.6, 0.8, 1)) +dev.off() + + +# Output pixel coordinates of highly conserved signals + +# To clear it in case it existed +write(c(paste("X", "Y")), file = paste("hits-XY-", paste(fancy_name, ".hits", sep=""), sep=""), append = FALSE, sep = "\n") + + +for(i in 1:(length(score_copy[,1]))){ + for(j in 1:(length(score_copy[1,]))){ + if(score_copy[i,j] != 0){ + write(c(paste(i, j)), file = paste("hits-XY-", paste(fancy_name, ".hits", sep=""), sep=""), append = TRUE, sep = "\n") + } + } +}