Mercurial > repos > alvarofaure > bitlab
view chromeister/src/CHROMEISTER.c @ 0:7fdf47a0bae8 draft
Uploaded
author | alvarofaure |
---|---|
date | Wed, 12 Dec 2018 07:18:40 -0500 |
parents | |
children |
line wrap: on
line source
/********* File CHROMEISTER.c Author EPW <estebanpw@uma.es> Description Computes hits and generates a dotplot USAGE Usage is described by calling ./CHROMEISTER --help **********/ #include <stdio.h> #include <stdlib.h> #include <math.h> #include <string.h> #include <ctype.h> #include "structs.h" #include "alignmentFunctions.h" #include "commonFunctions.h" #define STARTING_SEQS 1000 #define PIECE_OF_DB_REALLOC 3200000 //half a gigabyte if divided by 8 bytes #define RANGE 2 uint64_t custom_kmer = 32; // Defined as external in structs.h uint64_t diffuse_z = 4; // Defined as external in structs.h uint64_t get_seq_len(FILE * f); void init_args(int argc, char ** av, FILE ** query, FILE ** database, FILE ** out_database, uint64_t * custom_kmer, uint64_t * dimension, uint64_t * diffuse_z); int main(int argc, char ** av){ /* //Store positions of kmers uint64_t n_pools_used = 0; //Mempool_l * mp = (Mempool_l *) malloc(MAX_MEM_POOLS*sizeof(Mempool_l)); //if(mp == NULL) terror("Could not allocate vectors for memory pools"); Mempool_l mp[MAX_MEM_POOLS]; init_mem_pool_llpos(&mp[n_pools_used]); //llpos * aux; uint64_t n_pools_used_AVL = 0; Mempool_AVL mp_AVL[MAX_MEM_POOLS]; init_mem_pool_AVL(&mp_AVL[n_pools_used_AVL]); */ Tuple_hits * thit; /* AVLTree * root = NULL; root = insert_AVLTree(root, 10, mp_AVL, &n_pools_used_AVL, 0, mp, &n_pools_used); llpos * some = find_AVLTree(root, 25); while(some != NULL){ printf("#%"PRIu64", ", some->pos); some = some->next; } */ uint64_t i, j; //query to read kmers from, database to find seeds FILE * query = NULL, * database = NULL, * out_database = NULL; uint64_t dimension = 1000; // Default 1000 * 1000 init_args(argc, av, &query, &database, &out_database, &custom_kmer, &dimension, &diffuse_z); unsigned char char_converter[91]; char_converter[(unsigned char)'A'] = 0; char_converter[(unsigned char)'C'] = 1; char_converter[(unsigned char)'G'] = 2; char_converter[(unsigned char)'T'] = 3; // Variables to account for positions // Print info fprintf(stdout, "[INFO] Loading database\n"); // Variables to read kmers char c = 'N'; //Char to read character // Current length of array and variables for the buffer uint64_t idx = 0, r = 0; //Vector to read in batches char * temp_seq_buffer = NULL; if ((temp_seq_buffer = calloc(READBUF, sizeof(char))) == NULL) { terror("Could not allocate memory for read buffer"); } //Dimensional matrix uint64_t ** representation = (uint64_t **) calloc(dimension+1, sizeof(uint64_t *)); if(representation == NULL) terror("Could not allocate representation"); for(i=0; i<dimension+1; i++){ representation[i] = (uint64_t *) calloc(dimension+1, sizeof(uint64_t)); if(representation[i] == NULL) terror("Could not allocate second loop representation"); } /* fseek(database, 0, SEEK_END); uint64_t aprox_len_query = ftell(database); uint64_t aprox_len_db = aprox_len_query; rewind(database); */ uint64_t aprox_len_query = get_seq_len(database); uint64_t aprox_len_db = aprox_len_query; uint64_t a_hundreth = (aprox_len_query/100); unsigned char curr_kmer[custom_kmer], reverse_kmer[custom_kmer]; curr_kmer[0] = reverse_kmer[0] = '\0'; uint64_t word_size = 0, word_size_rev = 0; //To hold all information related to database uint64_t current_len = 0; //To force reading from the buffer idx = READBUF + 1; //unsigned char aux_kmer[custom_kmer+1]; //Vector to store query seq unsigned char * seq_vector_query = (unsigned char *) malloc(READBUF*sizeof(unsigned char)); if(seq_vector_query == NULL) terror("Could not allocate memory for query vector"); /* Container * ct = (Container *) calloc(1, sizeof(Container)); if(ct == NULL) terror("Could not allocate container"); */ Index * ctidx = (Index *) calloc(1, sizeof(Index)); if(ctidx == NULL) terror("Could not allocate container"); //begin = clock(); c = buffered_fgetc(temp_seq_buffer, &idx, &r, database); while((!feof(database) || (feof(database) && idx < r))){ if(c == '>'){ while(c != '\n') c = buffered_fgetc(temp_seq_buffer, &idx, &r, database); //Skip ID while(c != '>' && (!feof(database) || (feof(database) && idx < r))){ //Until next id c = buffered_fgetc(temp_seq_buffer, &idx, &r, database); c = toupper(c); if(c == 'A' || c == 'C' || c == 'G' || c == 'T'){ curr_kmer[word_size] = (unsigned char) c; if(word_size < custom_kmer) ++word_size; ++current_len; if(current_len % a_hundreth == 0){ fprintf(stdout, "\r%"PRIu64"%%...", 1+100*current_len/aprox_len_query); //printf("%"PRIu64"%%..wasted: (%e) (%e)", 1+100*pos_in_query/aprox_len_query, (double)(wasted_cycles_forward)/CLOCKS_PER_SEC, (double)(wasted_cycles_reverse)/CLOCKS_PER_SEC); fflush(stdout); } }else{ //It can be anything (including N, Y, X ...) if(c != '\n' && c != '>'){ word_size = 0; // data_database.sequences[pos_in_database++] = (unsigned char) 'N'; //Convert to N ++current_len; } } //if(current_len % 1000000 == 0) printf(" curr len %" PRIu64"\n", current_len); if(word_size == custom_kmer){ //write to hash table thit = &ctidx->table[char_converter[curr_kmer[0]]][char_converter[curr_kmer[1]]][char_converter[curr_kmer[2]]] [char_converter[curr_kmer[3]]][char_converter[curr_kmer[4]]][char_converter[curr_kmer[5]]] [char_converter[curr_kmer[6]]][char_converter[curr_kmer[7]]][char_converter[curr_kmer[8]]] [char_converter[curr_kmer[9]]][char_converter[curr_kmer[10]]][char_converter[curr_kmer[11]]]; /* typedef struct tuple_hits{ int repetition; int hit_count; uint64_t key; uint64_t pos; } Tuple_hits; */ if(thit->repetition == FALSE){ // Then we can insert thit->hit_count = 0; thit->key = collisioned_hash(&curr_kmer[0], custom_kmer); thit->pos = current_len; }else{ // Otherwise we break it thit->repetition = TRUE; } //thit->root = insert_AVLTree(thit->root, hashOfWord(&curr_kmer[0], custom_kmer, FIXED_K), mp_AVL, &n_pools_used_AVL, current_len, mp, &n_pools_used); //thit->root = insert_AVLTree(thit->root, collisioned_hash(&curr_kmer[0], custom_kmer), mp_AVL, &n_pools_used_AVL, current_len, mp, &n_pools_used); // Non overlapping word_size = 0; // Overlapping //memmove(&curr_kmer[0], &curr_kmer[1], custom_kmer-1); //--word_size; } } word_size = 0; }else{ c = buffered_fgetc(temp_seq_buffer, &idx, &r, database); } } //end = clock(); // data_database.total_len = pos_in_database; //fprintf(stdout, "[INFO] Database loaded and of length %"PRIu64". Hash table building took %e seconds\n", data_database.total_len, (double)(end-begin)/CLOCKS_PER_SEC); fprintf(stdout, "[INFO] Database loaded and of length %"PRIu64".\n", current_len); //close database fclose(database); //begin = clock(); double pixel_size_db = (double) dimension / (double) current_len; double ratio_db = (double) current_len / dimension; // Get file length //fseek(query, 0, SEEK_END); //aprox_len_query = ftell(query); //rewind(query); aprox_len_query = get_seq_len(query); //uint64_t reallocs_hash_holder_table = 1; //uint64_t n_items_hash_holder_table = aprox_len_query / 5; //Hash_holder * hash_holder_table = (Hash_holder *) calloc(n_items_hash_holder_table, sizeof(Hash_holder)); //if(hash_holder_table == NULL) terror("Could not allocate hash holding table"); a_hundreth = (aprox_len_query/100); double pixel_size_query = (double) dimension / (double) aprox_len_query; double ratio_query = (double) aprox_len_query / dimension; double i_r_fix = MAX(1.0, custom_kmer * pixel_size_query); double j_r_fix = MAX(1.0, custom_kmer * pixel_size_db); fprintf(stdout, "[INFO] Ratios: Q [%e] D [%e]. Lenghts: Q [%"PRIu64"] D [%"PRIu64"]\n", ratio_query, ratio_db, aprox_len_query, current_len); fprintf(stdout, "[INFO] Pixel size: Q [%e] D [%e].\n", pixel_size_query, pixel_size_db); fprintf(stdout, "[INFO] Computing absolute hit numbers.\n"); current_len = 0; //llpos * the_original_hit; //To force reading from the buffer idx = READBUF + 1; c = buffered_fgetc(temp_seq_buffer, &idx, &r, query); //uint64_t c_hash_holder = 0; while((!feof(query) || (feof(query) && idx < r))){ if(c == '>'){ word_size = 0; word_size_rev = custom_kmer-1; while(c != '\n'){ c = buffered_fgetc(temp_seq_buffer, &idx, &r, query); } //Skip ID while(c != '>' && (!feof(query) || (feof(query) && idx < r))){ //Until next id c = buffered_fgetc(temp_seq_buffer, &idx, &r, query); c = toupper(c); if(c == 'A' || c == 'C' || c == 'G' || c == 'T'){ ++current_len; if(current_len % a_hundreth == 0){ fprintf(stdout, "\r%"PRIu64"%%...", 1+100*current_len/aprox_len_query); fflush(stdout); } curr_kmer[word_size] = (unsigned char) c; ++word_size; switch(c){ case ('A'): reverse_kmer[word_size_rev] = (unsigned)'T'; break; case ('C'): reverse_kmer[word_size_rev] = (unsigned)'G'; break; case ('G'): reverse_kmer[word_size_rev] = (unsigned)'C'; break; case ('T'): reverse_kmer[word_size_rev] = (unsigned)'A'; break; } if(word_size_rev != 0) --word_size_rev; if(word_size == custom_kmer){ //hash_forward = hashOfWord(&curr_kmer[0], custom_kmer, FIXED_K); //hash_reverse = hashOfWord(&reverse_kmer[0], custom_kmer, FIXED_K); uint64_t hash_forward, hash_reverse; hash_forward = collisioned_hash(&curr_kmer[0], custom_kmer); hash_reverse = collisioned_hash(&reverse_kmer[0], custom_kmer); thit = &ctidx->table[char_converter[curr_kmer[0]]][char_converter[curr_kmer[1]]][char_converter[curr_kmer[2]]] [char_converter[curr_kmer[3]]][char_converter[curr_kmer[4]]][char_converter[curr_kmer[5]]] [char_converter[curr_kmer[6]]][char_converter[curr_kmer[7]]][char_converter[curr_kmer[8]]] [char_converter[curr_kmer[9]]][char_converter[curr_kmer[10]]][char_converter[curr_kmer[11]]]; //AVLTree * search = find_AVLTree(thit->root, hash_forward); if(thit->repetition == FALSE && hash_forward == thit->key){ // Attention ::::: you were not removing the ones with count==1 earlier thit->pos_in_y = current_len; thit->hit_count++; } thit = &ctidx->table[char_converter[reverse_kmer[0]]][char_converter[reverse_kmer[1]]][char_converter[reverse_kmer[2]]] [char_converter[reverse_kmer[3]]][char_converter[reverse_kmer[4]]][char_converter[reverse_kmer[5]]] [char_converter[reverse_kmer[6]]][char_converter[reverse_kmer[7]]][char_converter[reverse_kmer[8]]] [char_converter[reverse_kmer[9]]][char_converter[reverse_kmer[10]]][char_converter[reverse_kmer[11]]]; if(thit->repetition == FALSE && hash_reverse == thit->key){ // Attention ::::: you were not removing the ones with count==1 earlier thit->pos_in_y = current_len; thit->hit_count++; } /* if(search != NULL && search->count == 1){ //If count is two, then it is a rep thit->hit_count += search->count; hash_holder_table[c_hash_holder].pos = current_len; hash_holder_table[c_hash_holder].node = search; hash_holder_table[c_hash_holder].th = thit; ++c_hash_holder; if(c_hash_holder == n_items_hash_holder_table*reallocs_hash_holder_table){ ++reallocs_hash_holder_table; hash_holder_table = (Hash_holder *) realloc(hash_holder_table, n_items_hash_holder_table*reallocs_hash_holder_table*sizeof(Hash_holder)); if(hash_holder_table == NULL) terror("Could not realloc hash holder table"); } } */ //search = find_AVLTree(thit->root, hash_reverse); /* if(search != NULL && search->count == 1){ //If count is two, then it is a rep thit->hit_count += search->count; hash_holder_table[c_hash_holder].pos = current_len; hash_holder_table[c_hash_holder].node = search; hash_holder_table[c_hash_holder].th = thit; ++c_hash_holder; if(c_hash_holder == n_items_hash_holder_table*reallocs_hash_holder_table){ ++reallocs_hash_holder_table; hash_holder_table = (Hash_holder *) realloc(hash_holder_table, n_items_hash_holder_table*reallocs_hash_holder_table*sizeof(Hash_holder)); if(hash_holder_table == NULL) terror("Could not realloc hash holder table"); } } */ // Overlapping memmove(&curr_kmer[0], &curr_kmer[1], custom_kmer-1); memmove(&reverse_kmer[1], &reverse_kmer[0], custom_kmer-1); --word_size; // Non overlapping //word_size = 0; //word_size_rev = custom_kmer-1; } }else{ if(c != '\n' && c != '>'){ word_size = 0; word_size_rev = custom_kmer-1; ++current_len; } } } }else{ c = buffered_fgetc(temp_seq_buffer, &idx, &r, query); } } /// Out fprintf(stdout, "Scanning hits table.\n"); a_hundreth = MAX(1, TOTAL_ENTRIES/100); uint64_t t_computed = 0; uint64_t w0,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10,w11; for(w0=0;w0<4;w0++){ for(w1=0;w1<4;w1++){ for(w2=0;w2<4;w2++){ for(w3=0;w3<4;w3++){ for(w4=0;w4<4;w4++){ for(w5=0;w5<4;w5++){ for(w6=0;w6<4;w6++){ for(w7=0;w7<4;w7++){ for(w8=0;w8<4;w8++){ for(w9=0;w9<4;w9++){ for(w10=0;w10<4;w10++){ for(w11=0;w11<4;w11++){ if(t_computed % a_hundreth == 0){ fprintf(stdout, "\r%"PRIu64"%%...", 1+100*t_computed/TOTAL_ENTRIES); fflush(stdout); } ++t_computed; Tuple_hits * taux = &ctidx->table[w0][w1][w2][w3][w4][w5][w6][w7][w8][w9][w10][w11]; if(taux->hit_count == 1){ // We plot it // Convert scale to representation uint64_t redir_db = (uint64_t) (taux->pos / (ratio_db)); uint64_t redir_query = (uint64_t) (taux->pos_in_y / (ratio_query)); double i_r = i_r_fix; double j_r = j_r_fix; while((uint64_t) i_r >= 1 && (uint64_t) j_r >= 1){ if((int64_t) redir_query - (int64_t) i_r > 0 && (int64_t) redir_db - (int64_t) j_r > 0){ representation[(int64_t) redir_query - (int64_t) i_r][(int64_t) redir_db - (int64_t) j_r]++; }else{ representation[redir_query][redir_db]++; break; } i_r -= MIN(1.0, pixel_size_query); j_r -= MIN(1.0, pixel_size_db); } } } } } } } } } } } } } } //double average_hit = ((double) total_hits / (double) table_size); //average_hit = 2.2; /* //fprintf(stdout, "[INFO] Total hit count is %"PRIu64" on a size of %"PRIu64" Avg = %e.\n", total_hits, table_size, average_hit); fprintf(stdout, "[INFO] Total hit count is %"PRIu64" on a size of %"PRIu64" E' = %e.\n", total_hits, table_size, Eprime); a_hundreth = MAX(1,c_hash_holder/100); for(current_len = 0; current_len < c_hash_holder; current_len++){ if(current_len % a_hundreth == 0){ fprintf(stdout, "\r%"PRIu64"%%...", 1+100*current_len/c_hash_holder); fflush(stdout); } aux = hash_holder_table[current_len].node->next; //if(hash_holder_table[current_len].th->hit_count < (uint64_t) average_hit){ if(hash_holder_table[current_len].th->hit_count < (uint64_t) Eprime){ while(aux != NULL){ // Convert scale to representation uint64_t redir_db = (uint64_t) (aux->pos / (ratio_db)); uint64_t redir_query = (uint64_t) (hash_holder_table[current_len].pos / (ratio_query)); double i_r = i_r_fix; double j_r = j_r_fix; while((uint64_t) i_r >= 1 && (uint64_t) j_r >= 1){ if((int64_t) redir_query - (int64_t) i_r > 0 && (int64_t) redir_db - (int64_t) j_r > 0){ representation[(int64_t) redir_query - (int64_t) i_r][(int64_t) redir_db - (int64_t) j_r]++; }else{ representation[redir_query][redir_db]++; break; } i_r -= MIN(1.0, pixel_size_query); j_r -= MIN(1.0, pixel_size_db); } aux = aux->next; } } } */ //end = clock(); //fprintf(stdout, "\n[INFO] Query length %"PRIu64". Hits completed. Took %e seconds\n", data_query.total_len, (double)(end-begin)/CLOCKS_PER_SEC); fprintf(stdout, "\n[INFO] Query length %"PRIu64".\n", current_len); //begin = clock(); //reads_per_thread = (uint64_t) (floorl((long double) data_query.n_seqs / (long double) n_threads)); fprintf(stdout, "[INFO] Writing matrix.\n"); uint64_t unique_diffuse = 0; fprintf(out_database, "%"PRIu64"\n", aprox_len_query); fprintf(out_database, "%"PRIu64"\n", aprox_len_db); // And replace 2's with 1's for(i=0; i<dimension+1; i++){ for(j=0; j<dimension; j++){ fprintf(out_database, "%"PRIu64" ", representation[i][j]); unique_diffuse += representation[i][j]; } fprintf(out_database, "%"PRIu64"\n", representation[i][dimension]); unique_diffuse += representation[i][dimension]; } fprintf(stdout, "[INFO] Found %"PRIu64" unique hits for z = %"PRIu64".\n", unique_diffuse, diffuse_z); //free(ct->table); //free(hash_holder_table); /* for(i=0;i<=n_pools_used_AVL;i++){ free(mp_AVL[i].base); } for(i=0;i<=n_pools_used;i++){ free(mp[i].base); } */ for(i=0;i<dimension;i++){ free(representation[i]); } free(representation); if(out_database != NULL) fclose(out_database); return 0; } void init_args(int argc, char ** av, FILE ** query, FILE ** database, FILE ** out_database, uint64_t * custom_kmer, uint64_t * dimension, uint64_t * diffuse_z){ int pNum = 0; while(pNum < argc){ if(strcmp(av[pNum], "--help") == 0){ fprintf(stdout, "USAGE:\n"); fprintf(stdout, " CHROMEISTER -query [query] -db [database] -out [outfile]\n"); fprintf(stdout, "OPTIONAL:\n"); fprintf(stdout, " -kmer [Integer: k>1 (default 32)]\n"); fprintf(stdout, " -diffuse [Integer: z>0 (default 4)]\n"); fprintf(stdout, " -dimension Size of the output [Integer: d>0 (default 1000)]\n"); fprintf(stdout, " -out [File path]\n"); fprintf(stdout, " --help Shows help for program usage\n"); fprintf(stdout, "\n"); fprintf(stdout, "PLEASE NOTICE: The reverse complementary is calculated for the QUERY.\n"); exit(1); } if(strcmp(av[pNum], "-query") == 0){ *query = fopen64(av[pNum+1], "rt"); if(query==NULL) terror("Could not open query file"); } if(strcmp(av[pNum], "-db") == 0){ *database = fopen64(av[pNum+1], "rt"); if(database==NULL) terror("Could not open database file"); } if(strcmp(av[pNum], "-out") == 0){ *out_database = fopen(av[pNum+1], "wt"); if(out_database==NULL) terror("Could not open output database file"); } if(strcmp(av[pNum], "-kmer") == 0){ *custom_kmer = (uint64_t) atoi(av[pNum+1]); if(*custom_kmer < BYTES_IN_MER) terror("K-mer size must be larger than 4"); if(*custom_kmer % BYTES_IN_MER != 0) terror("K-mer size must be a multiple of 4"); } if(strcmp(av[pNum], "-diffuse") == 0){ *diffuse_z = (uint64_t) atoi(av[pNum+1]); if(*diffuse_z == 0 || *diffuse_z > 32) terror("Z must satisfy 0<z<=32"); } if(strcmp(av[pNum], "-dimension") == 0){ *dimension = (uint64_t) atoi(av[pNum+1]); if(*dimension < 1) terror("Dimension must be a positive integer"); } pNum++; } if(*query==NULL || *database==NULL || *out_database==NULL) terror("A query, database and output file is required"); } uint64_t get_seq_len(FILE * f) { char c = '\0'; uint64_t l = 0; while(!feof(f)){ c = getc(f); if(c == '>'){ while(c != '\n') c = getc(f); } c = toupper(c); if(c >= 'A' && c <= 'Z'){ ++l; } } rewind(f); return l; }