Mercurial > repos > amawla > edger
comparison edgeR.pl @ 4:a8a56766694e draft default tip
Uploaded
author | amawla |
---|---|
date | Mon, 24 Aug 2015 18:50:49 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
3:3fb55f96f065 | 4:a8a56766694e |
---|---|
1 #!/bin/perl | |
2 | |
3 #EdgeR.pl Version 0.0.3 | |
4 #Contributors: Monica Britton, Blythe Durbin-Johnson, Joseph Fass, Nikhil Joshi, Alex Mawla | |
5 | |
6 use strict; | |
7 use warnings; | |
8 use Getopt::Std; | |
9 use File::Basename; | |
10 use File::Path qw(make_path remove_tree); | |
11 | |
12 $| = 1; | |
13 | |
14 my %OPTIONS = (a => "glm", d => "tag", f => "BH", r => 5, u => "movingave"); | |
15 | |
16 getopts('a:d:e:f:h:lmn:o:r:tu:', \%OPTIONS); | |
17 | |
18 | |
19 die qq( | |
20 Usage: edgeR.pl [OPTIONS] factor::factor1::levels [factor::factor2::levels ...] cp::cont_pred1::values [cp::cont_pred2::values ...] cnt::contrast1 [cnt::contrast2] matrix | |
21 | |
22 OPTIONS: -a STR Type Of Analysis [glm, pw, limma] (default: $OPTIONS{a}) | |
23 -d STR The dispersion estimate to use for GLM analysis [tag] (default: $OPTIONS{d}) | |
24 -e STR Path to place additional output files | |
25 -f STR False discovery rate adjustment method [BH] (default: $OPTIONS{f}) | |
26 -h STR Name of html file for additional files | |
27 -l Output the normalised digital gene expression matrix in log2 format (only applicable when using limma and -n is also specified) | |
28 -m Perform all pairwise comparisons | |
29 -n STR File name to output the normalised digital gene expression matrix (only applicable when usinf glm or limma model) | |
30 -o STR File name to output csv file with results | |
31 -r INT Common Dispersion Rowsum Filter, ony applicable when 1 factor analysis selected (default: $OPTIONS{r}) | |
32 -t Estimate Tagwise Disp when performing 1 factor analysis | |
33 -u STR Method for allowing the prior distribution for the dispersion to be abundance- dependent ["movingave"] (default: $OPTIONS{u}) | |
34 | |
35 ) if(!@ARGV); | |
36 | |
37 my $matrix = pop @ARGV; | |
38 | |
39 make_path($OPTIONS{e}); | |
40 open(Rcmd,">$OPTIONS{e}/r_script.R") or die "Cannot open $OPTIONS{e}/r_script.R\n\n"; | |
41 print Rcmd " | |
42 zz <- file(\"$OPTIONS{e}/r_script.err\", open=\"wt\") | |
43 sink(zz) | |
44 sink(zz, type=\"message\") | |
45 | |
46 library(edgeR) | |
47 library(limma) | |
48 | |
49 toc <- read.table(\"$matrix\", sep=\"\\t\", comment=\"\", as.is=T) | |
50 groups <- sapply(toc[1, -1], strsplit, \":\") | |
51 for(i in 1:length(groups)) { g <- make.names(groups[[i]][2]); names(groups)[i] <- g; groups[[i]] <- groups[[i]][-2] } | |
52 colnames(toc) <- make.names(toc[2,]) | |
53 toc[,1] <- gsub(\",\", \".\", toc[,1]) | |
54 tagnames <- toc[-(1:2), 1] | |
55 rownames(toc) <- toc[,1] | |
56 toc <- toc[-(1:2), -1] | |
57 for(i in colnames(toc)) toc[, i] <- as.numeric(toc[,i]) | |
58 norm_factors <- calcNormFactors(as.matrix(toc)) | |
59 | |
60 pw_tests <- list() | |
61 uniq_groups <- unique(names(groups)) | |
62 for(i in 1:(length(uniq_groups)-1)) for(j in (i+1):length(uniq_groups)) pw_tests[[length(pw_tests)+1]] <- c(uniq_groups[i], uniq_groups[j]) | |
63 DGE <- DGEList(toc, lib.size=norm_factors*colSums(toc), group=names(groups)) | |
64 pdf(\"$OPTIONS{e}/MA_plots_normalisation.pdf\", width=14) | |
65 for(i in 1:length(pw_tests)) { | |
66 j <- c(which(names(groups) == pw_tests[[i]][1])[1], which(names(groups) == pw_tests[[i]][2])[1]) | |
67 par(mfrow = c(1, 2)) | |
68 maPlot(toc[, j[1]], toc[, j[2]], normalize = TRUE, pch = 19, cex = 0.2, ylim = c(-10, 10), main=paste(\"MA Plot\", colnames(toc)[j[1]], \"vs\", colnames(toc)[j[2]])) | |
69 grid(col = \"blue\") | |
70 abline(h = log2(norm_factors[j[2]]), col = \"red\", lwd = 4) | |
71 maPlot(DGE\$counts[, j[1]]/DGE\$samples\$lib.size[j[1]], DGE\$counts[, j[2]]/DGE\$samples\$lib.size[j[2]], normalize = FALSE, pch = 19, cex = 0.2, ylim = c(-8, 8), main=paste(\"MA Plot\", colnames(toc)[j[1]], \"vs\", colnames(toc)[j[2]], \"Normalised\")) | |
72 grid(col = \"blue\") | |
73 } | |
74 dev.off() | |
75 pdf(file=\"$OPTIONS{e}/MDSplot.pdf\") | |
76 plotMDS(DGE, main=\"MDS Plot\", col=as.numeric(factor(names(groups)))+1, xlim=c(-3,3)) | |
77 dev.off() | |
78 tested <- list() | |
79 "; | |
80 | |
81 my $all_cont; | |
82 my @add_cont; | |
83 my @fact; | |
84 my @fact_names; | |
85 my @cp; | |
86 my @cp_names; | |
87 if(@ARGV) { | |
88 foreach my $input (@ARGV) { | |
89 my @tmp = split "::", $input; | |
90 if($tmp[0] eq "factor") { | |
91 $tmp[1] =~ s/[ \?\(\)\[\]\/\\=+<>:;\"\',\*\^\|\&-]/./g; | |
92 push @fact_names, $tmp[1]; | |
93 $tmp[2] =~ s/:/\", \"/g; | |
94 $tmp[2] = "\"".$tmp[2]."\""; | |
95 push @fact, $tmp[2]; | |
96 } elsif($tmp[0] eq "cp") { | |
97 $tmp[1] =~ s/[ \?\(\)\[\]\/\\=+<>:;\"\',\*\^\|\&-]/./g; | |
98 push @cp_names, $tmp[1]; | |
99 $tmp[2] =~ s/:/, /g; | |
100 push @cp, $tmp[2]; | |
101 } elsif($tmp[0] eq "cnt") { | |
102 push @add_cont, $tmp[1]; | |
103 } else { | |
104 die("Unknown Input: $input\n"); | |
105 } | |
106 } | |
107 } | |
108 | |
109 if($OPTIONS{a} eq "pw") { | |
110 print Rcmd " | |
111 disp <- estimateCommonDisp(DGE, rowsum.filter=$OPTIONS{r}) | |
112 "; | |
113 if(defined $OPTIONS{t}) { | |
114 print Rcmd " | |
115 disp <- estimateTrendedDisp (disp) | |
116 disp <- estimateTagwiseDisp(disp, trend=\"$OPTIONS{u}\") | |
117 pdf(file=\"$OPTIONS{e}/Tagwise_Dispersion_vs_Abundance.pdf\") | |
118 plotBCV(disp, cex=0.4) | |
119 abline(h=disp\$common.dispersion, col=\"firebrick\", lwd=3) | |
120 dev.off() | |
121 "; | |
122 } | |
123 print Rcmd " | |
124 for(i in 1:length(pw_tests)) { | |
125 tested[[i]] <- exactTest(disp, pair=pw_tests[[i]]) | |
126 names(tested)[i] <- paste(pw_tests[[i]][2], \"-\", pw_tests[[i]][1], sep=\"\") | |
127 } | |
128 pdf(file=\"$OPTIONS{e}/Smear_Plots.pdf\") | |
129 for(i in 1:length(pw_tests)) { | |
130 dt <- decideTestsDGE(tested[[i]], p.value=0.05, adjust.method=\"$OPTIONS{f}\") | |
131 if(sum(dt) > 0) { | |
132 de_tags <- rownames(disp)[which(dt != 0)] | |
133 ttl <- \"Diff. Exp. Genes With adj. Pvalue < 0.05\" | |
134 } else { | |
135 de_tags <- rownames(topTags(tested[[i]], n=100)\$table) | |
136 ttl <- \"Top 100 tags\" | |
137 } | |
138 | |
139 if(length(dt) < 5000) { | |
140 pointcex = 0.5 | |
141 } else { | |
142 pointcex = 0.2 | |
143 } | |
144 plotSmear(disp, pair=pw_tests[[i]], de.tags = de_tags, main = paste(\"Smear Plot\", names(tested)[i]), cex=0.5) | |
145 abline(h = c(-1, 1), col = \"blue\") | |
146 legend(\"topright\", c(\"2 Fold Change\", ttl) , lty=c(1, NA), pch=c(NA, 19), pt.cex=0.5, col=c(\"blue\", \"red\"), bty=\"n\") | |
147 } | |
148 dev.off() | |
149 "; | |
150 } | |
151 elsif($OPTIONS{a} eq "glm") { | |
152 for(my $fct = 0; $fct <= $#fact_names; $fct++) { | |
153 print Rcmd " | |
154 $fact_names[$fct] <- c($fact[$fct]) | |
155 "; | |
156 } | |
157 for(my $fct = 0; $fct <= $#cp_names; $fct++) { | |
158 print Rcmd " | |
159 $cp_names[$fct] <- c($cp[$fct]) | |
160 "; | |
161 } | |
162 my $all_fact = ""; | |
163 if(@fact_names) { | |
164 foreach (@fact_names) { | |
165 $all_fact .= " + factor($_)"; | |
166 } | |
167 } | |
168 my $all_cp = ""; | |
169 if(@cp_names) { | |
170 $all_cp = " + ".join(" + ", @cp_names); | |
171 } | |
172 print Rcmd " | |
173 group_fact <- factor(names(groups)) | |
174 design <- model.matrix(~ -1 + group_fact${all_fact}${all_cp}) | |
175 colnames(design) <- sub(\"group_fact\", \"\", colnames(design)) | |
176 "; | |
177 foreach my $fct (@fact_names) { | |
178 print Rcmd " | |
179 colnames(design) <- make.names(sub(\"factor.$fct.\", \"\", colnames(design))) | |
180 "; | |
181 } | |
182 if($OPTIONS{d} eq "tag") { | |
183 print Rcmd " | |
184 disp <- estimateGLMCommonDisp(DGE, design) | |
185 disp <- estimateGLMTrendedDisp(disp, design) | |
186 disp <- estimateGLMTagwiseDisp(disp, design) | |
187 fit <- glmFit(disp, design) | |
188 pdf(file=\"$OPTIONS{e}/Tagwise_Dispersion_vs_Abundance.pdf\") | |
189 plotBCV(disp, cex=0.4) | |
190 dev.off() | |
191 "; | |
192 } | |
193 if(@add_cont) { | |
194 $all_cont = "\"".join("\", \"", @add_cont)."\""; | |
195 print Rcmd " | |
196 cont <- c(${all_cont}) | |
197 for(i in uniq_groups) cont <- gsub(paste(groups[[i]], \"([^0-9])\", sep=\"\"), paste(i, \"\\\\1\", sep=\"\"), cont) | |
198 for(i in uniq_groups) cont <- gsub(paste(groups[[i]], \"\$\", sep=\"\"), i, cont) | |
199 "; | |
200 } else { | |
201 print Rcmd " | |
202 cont <- NULL | |
203 "; | |
204 } | |
205 if(defined $OPTIONS{m}) { | |
206 print Rcmd " | |
207 for(i in 1:length(pw_tests)) cont <- c(cont, paste(pw_tests[[i]][2], \"-\", pw_tests[[i]][1], sep=\"\")) | |
208 "; | |
209 } | |
210 if(!defined $OPTIONS{m} && !@add_cont){ | |
211 die("No Contrasts have been specified, you must at least either select multiple pairwise comparisons or specify a custom contrast\n"); | |
212 } | |
213 print Rcmd " | |
214 fit <- glmFit(disp, design) | |
215 cont <- makeContrasts(contrasts=cont, levels=design) | |
216 for(i in colnames(cont)) tested[[i]] <- glmLRT(fit, contrast=cont[,i]) | |
217 pdf(file=\"$OPTIONS{e}/Smear_Plots.pdf\") | |
218 for(i in colnames(cont)) { | |
219 dt <- decideTestsDGE(tested[[i]], p.value=0.05, adjust.method=\"$OPTIONS{f}\") | |
220 if(sum(dt) > 0) { | |
221 de_tags <- rownames(disp)[which(dt != 0)] | |
222 ttl <- \"Diff. Exp. Genes With adj. Pvalue < 0.05\" | |
223 } else { | |
224 de_tags <- rownames(topTags(tested[[i]], n=100)\$table) | |
225 ttl <- \"Top 100 tags\" | |
226 } | |
227 | |
228 if(length(dt) < 5000) { | |
229 pointcex = 0.5 | |
230 } else { | |
231 pointcex = 0.2 | |
232 } | |
233 plotSmear(disp, de.tags = de_tags, main = paste(\"Smear Plot\", i), cex=pointcex) | |
234 abline(h = c(-1, 1), col = \"blue\") | |
235 legend(\"topright\", c(\"2 Fold Change\", ttl) , lty=c(1, NA), pch=c(NA, 19), pt.cex=0.5, col=c(\"blue\", \"red\"), bty=\"n\") | |
236 } | |
237 dev.off() | |
238 | |
239 "; | |
240 if(defined $OPTIONS{n}) { | |
241 print Rcmd " | |
242 tab <- data.frame(ID=rownames(fit\$fitted.values), fit\$fitted.values, stringsAsFactors=F) | |
243 write.table(tab, \"$OPTIONS{n}\", quote=F, sep=\"\\t\", row.names=F) | |
244 "; | |
245 } | |
246 } elsif($OPTIONS{a} eq "limma") { | |
247 for(my $fct = 0; $fct <= $#fact_names; $fct++) { | |
248 print Rcmd " | |
249 $fact_names[$fct] <- c($fact[$fct]) | |
250 "; | |
251 } | |
252 for(my $fct = 0; $fct <= $#cp_names; $fct++) { | |
253 print Rcmd " | |
254 $cp_names[$fct] <- c($cp[$fct]) | |
255 "; | |
256 } | |
257 my $all_fact = ""; | |
258 if(@fact_names) { | |
259 foreach (@fact_names) { | |
260 $all_fact .= " + factor($_)"; | |
261 } | |
262 } | |
263 my $all_cp = ""; | |
264 if(@cp_names) { | |
265 $all_cp = " + ".join(" + ", @cp_names); | |
266 } | |
267 print Rcmd " | |
268 | |
269 group_fact <- factor(names(groups)) | |
270 design <- model.matrix(~ -1 + group_fact${all_fact}${all_cp}) | |
271 colnames(design) <- sub(\"group_fact\", \"\", colnames(design)) | |
272 "; | |
273 foreach my $fct (@fact_names) { | |
274 print Rcmd " | |
275 colnames(design) <- make.names(sub(\"factor.$fct.\", \"\", colnames(design))) | |
276 "; | |
277 } | |
278 print Rcmd " | |
279 isexpr <- rowSums(cpm(toc)>1) >= 1 | |
280 toc <- toc[isexpr, ] | |
281 pdf(file=\"$OPTIONS{e}/LIMMA_voom.pdf\") | |
282 y <- voom(toc, design, plot=TRUE, lib.size=colSums(toc)*norm_factors) | |
283 dev.off() | |
284 | |
285 pdf(file=\"$OPTIONS{e}/LIMMA_MDS_plot.pdf\") | |
286 plotMDS(y, labels=colnames(toc), col=as.numeric(factor(names(groups)))+1, gene.selection=\"common\") | |
287 dev.off() | |
288 fit <- lmFit(y, design) | |
289 "; | |
290 if(defined $OPTIONS{n}) { | |
291 if(defined $OPTIONS{l}) { | |
292 print Rcmd " | |
293 tab <- data.frame(ID=rownames(y\$E), y\$E, stringsAsFactors=F) | |
294 "; | |
295 } else { | |
296 print Rcmd " | |
297 tab <- data.frame(ID=rownames(y\$E), 2^y\$E, stringsAsFactors=F) | |
298 "; | |
299 } | |
300 print Rcmd " | |
301 write.table(tab, \"$OPTIONS{n}\", quote=F, sep=\"\\t\", row.names=F) | |
302 "; | |
303 } | |
304 if(@add_cont) { | |
305 $all_cont = "\"".join("\", \"", @add_cont)."\""; | |
306 print Rcmd " | |
307 cont <- c(${all_cont}) | |
308 for(i in uniq_groups) cont <- gsub(paste(groups[[i]], \"([^0-9])\", sep=\"\"), paste(i, \"\\\\1\", sep=\"\"), cont) | |
309 for(i in uniq_groups) cont <- gsub(paste(groups[[i]], \"\$\", sep=\"\"), i, cont) | |
310 "; | |
311 } else { | |
312 print Rcmd " | |
313 cont <- NULL | |
314 "; | |
315 } | |
316 if(defined $OPTIONS{m}) { | |
317 print Rcmd " | |
318 for(i in 1:length(pw_tests)) cont <- c(cont, paste(pw_tests[[i]][2], \"-\", pw_tests[[i]][1], sep=\"\")) | |
319 "; | |
320 } | |
321 if(!defined $OPTIONS{m} && !@add_cont){ | |
322 die("No Contrasts have been specified, you must at least either select multiple pairwise comparisons or specify a custom contrast\n"); | |
323 } | |
324 print Rcmd " | |
325 cont <- makeContrasts(contrasts=cont, levels=design) | |
326 fit2 <- contrasts.fit(fit, cont) | |
327 fit2 <- eBayes(fit2) | |
328 "; | |
329 } else { | |
330 die("Anaysis type $OPTIONS{a} not found\n"); | |
331 | |
332 } | |
333 if($OPTIONS{a} ne "limma") { | |
334 print Rcmd " | |
335 options(digits = 6) | |
336 tab <- NULL | |
337 for(i in names(tested)) { | |
338 tab_tmp <- topTags(tested[[i]], n=Inf, adjust.method=\"$OPTIONS{f}\")[[1]] | |
339 colnames(tab_tmp) <- paste(i, colnames(tab_tmp), sep=\":\") | |
340 tab_tmp <- tab_tmp[tagnames,] | |
341 if(is.null(tab)) { | |
342 tab <- tab_tmp | |
343 } else tab <- cbind(tab, tab_tmp) | |
344 } | |
345 tab <- cbind(Feature=rownames(tab), tab) | |
346 "; | |
347 } else { | |
348 print Rcmd " | |
349 tab <- NULL | |
350 options(digits = 6) | |
351 for(i in colnames(fit2)) { | |
352 tab_tmp <- topTable(fit2, coef=i, n=Inf, sort.by=\"none\", adjust.method=\"$OPTIONS{f}\") | |
353 colnames(tab_tmp)[-1] <- paste(i, colnames(tab_tmp)[-1], sep=\":\") | |
354 if(is.null(tab)) { | |
355 tab <- tab_tmp | |
356 } else tab <- cbind(tab, tab_tmp) | |
357 } | |
358 tab <- cbind(Feature=rownames(tab), tab) | |
359 "; | |
360 } | |
361 print Rcmd " | |
362 write.table(tab, \"$OPTIONS{o}\", quote=F, sep=\"\\t\", row.names=F) | |
363 sink(type=\"message\") | |
364 sink() | |
365 "; | |
366 close(Rcmd); | |
367 system("R --no-restore --no-save --no-readline < $OPTIONS{e}/r_script.R > $OPTIONS{e}/r_script.out"); | |
368 | |
369 open(HTML, ">$OPTIONS{h}"); | |
370 print HTML "<html><head><title>EdgeR: Empirical analysis of digital gene expression data</title></head><body><h3>EdgeR Additional Files:</h3><p><ul>\n"; | |
371 print HTML "<li><a href=MA_plots_normalisation.pdf>MA_plots_normalisation.pdf</a></li>\n"; | |
372 print HTML "<li><a href=MDSplot.pdf>MDSplot.pdf</a></li>\n"; | |
373 if($OPTIONS{a} eq "pw") { | |
374 if(defined $OPTIONS{t}) { | |
375 print HTML "<li><a href=Tagwise_Dispersion_vs_Abundance.pdf>Tagwise_Dispersion_vs_Abundance.pdf</a></li>\n"; | |
376 } | |
377 print HTML "<li><a href=Smear_Plots.pdf>Smear_Plots.pdf</a></li>\n"; | |
378 } elsif($OPTIONS{a} eq "glm" && $OPTIONS{d} eq "tag") { | |
379 print HTML "<li><a href=Tagwise_Dispersion_vs_Abundance.pdf>Tagwise_Dispersion_vs_Abundance.pdf</a></li>\n"; | |
380 print HTML "<li><a href=Smear_Plots.pdf>Smear_Plots.pdf</a></li>\n"; | |
381 } elsif($OPTIONS{a} eq "limma") { | |
382 print HTML "<li><a href=LIMMA_MDS_plot.pdf>LIMMA_MDS_plot.pdf</a></li>\n"; | |
383 print HTML "<li><a href=LIMMA_voom.pdf>LIMMA_voom.pdf</a></li>\n"; | |
384 } | |
385 print HTML "<li><a href=r_script.R>r_script.R</a></li>\n"; | |
386 print HTML "<li><a href=r_script.out>r_script.out</a></li>\n"; | |
387 print HTML "<li><a href=r_script.err>r_script.err</a></li>\n"; | |
388 print HTML "</ul></p>\n"; | |
389 close(HTML); | |
390 |