Mercurial > repos > amawla > edger
view edgeR.xml @ 1:aab4a565c0e8 draft
Uploaded
author | amawla |
---|---|
date | Tue, 04 Aug 2015 15:25:43 -0400 |
parents | 91ca33096034 |
children |
line wrap: on
line source
<tool id="edgeR" name="edgeR" version="0.0.3"> <description> - Estimates differential gene expression for short read sequence count using methods appropriate for count data</description> <requirements> <requirement type="R-module">edgeR</requirement> <requirement type="R-module">limma</requirement> </requirements> <command interpreter="perl"> edgeR.pl -a $analysis_type.analysis -e $html_file.files_path -f BH -h $html_file -o $output <!--Pairwise comparisons 1 Factor Analysis--> #if $analysis_type.analysis == "pw": -r $analysis_type.rowsumfilter #if $analysis_type.tagwise_disp.twd == "TRUE": -u movingave -t #end if <!--GLM Generalized Linear Models (Multiple Factors)--> #else if $analysis_type.analysis == "glm": #if $analysis_type.exp.export_norm == "true": -n $norm_exp #end if -d tag $analysis_type.cont_pw #for $cnt in $analysis_type.contrasts: "cnt::${cnt.add_cont}" #end for <!--LIMMA Linearized Models (Multiple Factors)--> #else #if $analysis_type.exp.export_norm == "true": -n $norm_exp $analysis_type.exp.log #end if $analysis_type.cont_pw #for $cnt in $analysis_type.contrasts: "cnt::${cnt.add_cont}" #end for #end if $matrix </command> <inputs> <param name="matrix" type="data" format="tabular" label="Digital Expression Matrix"/> <conditional name="analysis_type"> <param name="analysis" type="select" label="Type Of Analysis"> <option value="pw">Pairwise comparisons (1 Factor Analysis)</option> <option value="glm" selected="true">Generalized Linear Models (Multiple Factor Analysis using GLM)</option> <option value="limma">Linear Models for RNA-Seq (Multiple Factor Analysis using LIMMA)</option> </param> <when value="pw"> <param name="rowsumfilter" type="integer" value="5" label="Common Dispersion Rowsum Filter" help="Numeric scalar giving a value for the filtering out of low abundance tags in the estimation of the common dispersion. Only tags with total sum of counts above this value are used in the estimation of the common dispersion. Low abundance tags can adversely affect the estimation of the common dispersion, so this argument allows the user to select an appropriate filter threshold for the tag abundance."/> <conditional name="tagwise_disp"> <param name="twd" type="select" label="Maximize the Negative Binomial Weighted Conditional Likelihood" help="Calculate and use an estimate of the dispersion parameter for each tag"> <option value="TRUE" selected="true">True</option> <option value="FALSE">False</option> </param> </conditional> </when> <when value="glm"> <param name="cont_pw" type="boolean" truevalue="-m" falsevalue="" checked="True" label="Perform all pairwise comparisons" help="Include all pairwise comparisons in the contrast matrix."/> <repeat name="contrasts" title="Contrast"> <param name="add_cont" title="Contrast" type="text" label="Enter the contrast of interest, e.g. (G1+G2)/2-G3 (no spaces or commas)"/> </repeat> <conditional name="exp"> <param name="export_norm" type="select" label="Save Normalised DGE Matrix"> <option value="true">Yes</option> <option value="false">No</option> </param> </conditional> </when> <when value="limma"> <param name="cont_pw" type="boolean" truevalue="-m" falsevalue="" checked="True" label="Perform all pairwise comparisons" help="Include all pairwise comparisons in the contrast matrix."/> <repeat name="contrasts" title="Contrast"> <param name="add_cont" title="Contrast" type="text" label="Enter the contrast of interest, e.g. (G1+G2)/2-G3 (no spaces or commas)"/> </repeat> <conditional name="exp"> <param name="export_norm" type="select" label="Save Normalised DGE Matrix"> <option value="true">Yes</option> <option value="false">No</option> </param> <when value="true"> <param name="log" type="boolean" truevalue="-l" falsevalue="" checked="True" label="Export Normalised DGE Matrix in Log2" help="Selecting this will log base 2 transform the Normalised Digital Gene Expression Matrix."/> </when> </conditional> </when> </conditional> </inputs> <outputs> <data format="tabular" name="output" label="EdgeR analysis on ${matrix.name}"/> <data name="html_file" format="html" label="EdgeR analysis plots for ${matrix.name}"/> <data name="norm_exp" format="tabular" label="EdgeR Norm Expr Matrix for ${matrix.name}"> <filter>analysis_type[ "analysis" ] != "pw" and analysis_type[ "exp" ][ "export_norm" ] == "true"</filter> </data> </outputs> <help> .. class:: infomark **What it does** Estimates differential gene expression for short read sequence count using methods appropriate for count data. If you have paired data you may also want to consider Tophat/Cufflinks. Input must be raw count data for each sequence arranged in a rectangular matrix as a tabular file. Note - no scaling - please make sure you have untransformed raw counts of reads for each sequence. Performs digital differential gene expression analysis between groups (eg a treatment and control). Biological replicates provide information about experimental variability required for reliable inference. **What it does not do** edgeR_ requires biological replicates. Without replicates you can't account for known important experimental sources of variability that the approach implemented here requires. **Input** A count matrix containing sequence names as rows and sample specific counts of reads from this sequence as columns. The matrix must have 2 header rows, the first indicating the group assignment and the second uniquely identifiying the samples. It must also contain a unique set of (eg Feature) names in the first column. Example:: # G1:Mut G1:Mut G1:Mut G2:WT G2:WT G2:WT #Feature Spl1 Spl2 Spl3 Spl4 Spl5 Spl6 NM_001001130 97 43 61 34 73 26 NM_001001144 25 8 9 3 5 5 NM_001001152 72 45 29 20 31 13 NM_001001160 0 1 1 1 0 0 NM_001001177 0 1 0 4 3 3 NM_001001178 0 2 1 0 4 0 NM_001001179 0 0 0 0 0 2 NM_001001180 0 0 0 0 0 2 NM_001001181 415 319 462 185 391 155 NM_001001182 1293 945 987 297 938 496 NM_001001183 5 4 11 7 11 2 NM_001001184 135 198 178 110 205 64 NM_001001185 186 1 0 1 1 0 NM_001001186 75 90 91 34 63 54 NM_001001187 267 236 170 165 202 51 NM_001001295 5 2 6 1 7 0 NM_001001309 1 0 0 1 2 1 ... Please use the "Count reads in features with htseq-count" tool to generate the count matrix. **Output** A tabular file containing relative expression levels, statistical estimates of differential expression probability, R scripts, log, and some helpful diagnostic plots. **Fixed Parameters** Method for allowing the prior distribution for the dispersion to be abundance-dependent used: movingave False discovery rate adjustment method used: Benjamini and Hochberg (1995) GLM dispersion estimate used: Tagwise Dispersion Gene filter used: less than 1 count per million reads .. class:: infomark **Attribution** This tool wraps the edgeR_ Bioconductor package so all calculations and plots are controlled by that code. See edgeR_ for all documentation and appropriate attribution. Recommended reference is Mark D. Robinson, Davis J. McCarthy, Gordon K. Smyth, PMCID: PMC2796818 .. class:: infomark **Attribution** When applying the LIMMA (Linear models for RNA-Seq) anlysis the tool also makes use of the limma_ Bioconductor package. Recommended reference is Smyth, G. K. (2005). Limma: linear models for microarray data. In: 'Bioinformatics and Computational Biology Solutions using R and Bioconductor'. R. Gentleman, V. Carey, S. Dudoit, R. Irizarry, W. Huber (eds), Springer, New York, pages 397--420. .. _edgeR: http://www.bioconductor.org/packages/release/bioc/html/edgeR.html .. _limma: http://www.bioconductor.org/packages/release/bioc/html/limma.html </help> </tool>