Mercurial > repos > anmoljh > activity_predict
diff predict_activity.R @ 0:20df9782b07a draft
planemo upload commit a1f4dd8eb560c649391ada1a6bb9505893a35272
author | anmoljh |
---|---|
date | Thu, 31 May 2018 11:33:23 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/predict_activity.R Thu May 31 11:33:23 2018 -0400 @@ -0,0 +1,157 @@ +########## +args <- commandArgs(T) +arg1 <- args[1] +arg2 <- args[2] +arg3 <- args[3] +#source("~/galaxy-dist/tools/mpdstoolsV2/tool3/Preold.R") +#pre(arg1,arg2,arg3 +set.seed(1) +pre <- function(args1,args2,args3){ +#args <- commandArgs(TRUE) +nTrain <- read.csv(args1,row.names= 1, header = T) # example nTrain.csv file of unknown activity +#save(nTrain,file = "nTrain.RData") +#load("nTrain.RData") +load(args2) # model generated from previous programn +newdata <- nTrain +modelFit <- Fit +########### +# input csv file must contaion the exact same column as used in model building # +# Also do pre-proccessing by means of centering and scaling +## problem in s4 object so first check that the given model has s4 object in +## >isS4(Fit$finalmodel) if it is s4 than add in with elseif loop +## eg . isS4(plsFit$finalModel) == TRUE +f=function(x){ + x<-as.numeric(as.character(x)) #first convert each column into numeric if it is from factor + x[is.na(x) | is.nan(x) | is.infinite(x)] = median(x, na.rm=TRUE) #convert the item with NA to median value from the column + x #display the column +} + +f2=function(x){ + all(is.na(x)) + } + + +fop <- apply(newdata,2,f2) +allcolumnmissing <- which(fop) +if (length(allcolumnmissing) > 0){ +newdata[,allcolumnmissing] <- 0 +newdata[,allcolumnmissing] <- newdata[,allcolumnmissing] + runif(3,0,0.00001) ### add noise} +} + +library(caret) + +#if(as.character(!isS4(Fit$finalModel == "TRUE"))) +if(exists('ppInfo')){ +#if(as.character(!isS4(Fit$finalModel == "TRUE"))) +if((Fit$method != "svmRadial") && (Fit$method != "svmLinear")) +{ + reqcol <- Fit$finalModel$xNames + newdata <- newdata[,reqcol] + newdata <- apply(newdata,2,f) + #newdata <- newdata + runif(3,0,0.0001) ### add noise to overcome from NZV error + #newdata1 <- preProcess(newdata, method = c("center", "scale")) + #newdata1 <- preProcess(newdata, ppInfo) + newdata11 <- predict(ppInfo,newdata) +########### + library(stats) + testpredict <- predict(modelFit,newdata11) + Label <- levels(testpredict) + a1 <- Label[1] + a2 <- Label[2] + probpredict <- predict(modelFit,newdata11,type="prob") + names <- as.data.frame(rownames(nTrain)) + colnames(names) <- "COMPOUND" + activity <- as.data.frame(testpredict) + colnames(activity) <- "PREDICTED ACTIVITY" + colnames(probpredict) <- c(eval(a1),eval(a2)) + Prob <- as.data.frame(probpredict) + dw <- format(cbind(names,Prob,activity),justify="centre") + write.table(dw,file=args3,row.names=FALSE,sep="\t") + + + +} else if((Fit$method == "svmRadial") | (Fit$method == "svmLinear")){ + library(stats) + reqcol <- colnames(Fit$trainingData) + reqcol <- reqcol[1:length(reqcol)-1] + newdata <- newdata[,reqcol] + + newdata <- apply(newdata,2,f) + #newdata <- newdata + runif(3,0,0.0001) ### add little noise to overcome from NZV problem + #newdata1 <- preProcess(newdata, method = c("center", "scale")) + #newdata1 <- preProcess(newdata,ppInfo) + newdata11 <- predict(ppInfo,newdata) + testpredict <- predict(modelFit,newdata11) + Label <- levels(testpredict) + a1 <- Label[1] + a2 <- Label[2] + probpredict <- predict(modelFit,newdata11,type="prob") + names <- as.data.frame(rownames(nTrain)) + colnames(names) <- "COMPOUND" + activity <- as.data.frame(testpredict) + colnames(activity) <- "PREDICTED ACTIVITY" + colnames(probpredict) <- c(eval(a1),eval(a2)) + Prob <- as.data.frame(probpredict) + dw <- format(cbind(names,Prob,activity),justify="centre") + write.table(dw,file=args3,row.names=FALSE,sep="\t") +}else { + dw <- "There is something wrong in data or model" + write.csv(dw,file=args3,row.names=FALSE) +} +} else{ + +#if(as.character(!isS4(Fit$finalModel == "TRUE"))) +if((Fit$method != "svmRadial") && (Fit$method != "svmLinear")) +{ + reqcol <- Fit$finalModel$xNames + newdata <- newdata[,reqcol] + newdata <- apply(newdata,2,f) + #newdata <- newdata + runif(3,0,0.0001) ### add noise to overcome from NZV error + +########### + library(stats) + testpredict <- predict(modelFit,newdata) + Label <- levels(testpredict) + a1 <- Label[1] + a2 <- Label[2] + probpredict <- predict(modelFit,newdata,type="prob") + names <- as.data.frame(rownames(nTrain)) + colnames(names) <- "COMPOUND" + activity <- as.data.frame(testpredict) + colnames(activity) <- "PREDICTED ACTIVITY" + colnames(probpredict) <- c(eval(a1),eval(a2)) + Prob <- as.data.frame(probpredict) + dw <- format(cbind(names,Prob,activity),justify="centre") + write.table(dw,file=args3,row.names=FALSE,sep="\t") + + + +} else if((Fit$method == "svmRadial") | (Fit$method == "svmLinear")){ + library(stats) + reqcol <- colnames(Fit$trainingData) + reqcol <- reqcol[1:length(reqcol)-1] + newdata <- newdata[,reqcol] + + newdata <- apply(newdata,2,f) + #newdata <- newdata + runif(3,0,0.0001) ### add little noise to overcome from NZV problem + + testpredict <- predict(modelFit,newdata) + Label <- levels(testpredict) + a1 <- Label[1] + a2 <- Label[2] + probpredict <- predict(modelFit,newdata,type="prob") + names <- as.data.frame(rownames(nTrain)) + colnames(names) <- "COMPOUND" + activity <- as.data.frame(testpredict) + colnames(activity) <- "PREDICTED ACTIVITY" + colnames(probpredict) <- c(eval(a1),eval(a2)) + Prob <- as.data.frame(probpredict) + dw <- format(cbind(names,Prob,activity),justify="centre") + write.table(dw,file=args3,row.names=FALSE,sep="\t") +}else { + dw <- "There is something wrong in data or model" + write.csv(dw,file=args3,row.names=FALSE) +} +} +} +pre(arg1,arg2,arg3)