Mercurial > repos > anmoljh > feature_selection
changeset 0:b4d2524e79ab draft
planemo upload commit a1f4dd8eb560c649391ada1a6bb9505893a35272
author | anmoljh |
---|---|
date | Fri, 01 Jun 2018 05:16:19 -0400 |
parents | |
children | f3aeeb15d4cc |
files | feature_selection.R feature_selection.xml tool_dependencies.xml |
diffstat | 3 files changed, 269 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/feature_selection.R Fri Jun 01 05:16:19 2018 -0400 @@ -0,0 +1,164 @@ +args <- commandArgs(T) + +arg1 <- args[1] +arg2 <- args[2] +arg3 <- args[3] +arg4 <- args[4] +arg5 <- args[5] +arg6 <- args[6] +arg7 <- args[7] +arg8 <- args[8] +arg9 <- args[9] +arg10 <- args[10] +library(caret) +library(doMC) +load(arg1) + +#RAWDATA <- dataX +#RAWDATA$outcome <- dataY + + +########################### +Smpling <- arg9 + +if(Smpling=="downsampling") +{ +dwnsmpl <- downSample(dataX,dataY) +RAWDATA <- dwnsmpl[,1:length(dwnsmpl)-1] +RAWDATA$outcome <- dwnsmpl[,length(dwnsmpl)] +dataX <- RAWDATA[,1:length(dwnsmpl)-1] +dataY <- RAWDATA[,"outcome"] +remove("dwnsmpl") +}else if(Smpling=="upsampling"){ +upsmpl <- upSample(dataX,dataY) +RAWDATA <- upsmpl[,1:length(upsmpl)-1] +RAWDATA$outcome <- upsmpl[,length(upsmpl)] +dataX <- RAWDATA[,1:length(upsmpl)-1] +dataY <- RAWDATA[,"outcome"] +remove("upsmpl") +}else { +RAWDATA <- dataX +RAWDATA$outcome <- dataY +} + + + + +########################## + + +rawData <- dataX +predictorNames <- names(rawData) + +isNum <- apply(rawData[,predictorNames, drop = FALSE], 2, is.numeric) +if(any(!isNum)) stop("all predictors in rawData should be numeric") + +colRate <- apply(rawData[, predictorNames, drop = FALSE], + 2, function(x) mean(is.na(x))) +colExclude <- colRate > 0.1 + if(any(colExclude)){ + predictorNames <- predictorNames[-which(colExclude)] + rawData <- RAWDATA[, c(predictorNames,"outcome")] + } else { + rawData <- RAWDATA + } + rowRate <- apply(rawData[, predictorNames, drop = FALSE], + 1, function(x) mean(is.na(x))) + + +rowExclude <- rowRate > 0 + if(any(rowExclude)){ + rawData <- rawData[!rowExclude, ] + ##hasMissing <- apply(rawData[, predictorNames, drop = FALSE], + ##1, function(x) mean(is.na(x))) + +############################################################################ + + +############################################################################### + } else { + rawData <- rawData[complete.cases(rawData),] + + } + +set.seed(2) + +#print(dim(dataX)) +#print(dim(rawData)) +#print(length(dataY)) + +nzv <- nearZeroVar(rawData[,1:(length(rawData) - 1)]) + if(length(nzv) > 0) { + #nzvVars <- names(rawData)[nzv] + rawData <- rawData[,-nzv] + #rawData$outcome <- dataY + } + +predictorNames <- names(rawData)[names(rawData) != "outcome"] + +dx <- rawData[,1:length(rawData)-1] +dy <- rawData[,length(rawData)] +corrThresh <- as.numeric(arg8) +highCorr <- findCorrelation(cor(dx, use = "pairwise.complete.obs"),corrThresh) +dx <- dx[, -highCorr] +subsets <- seq(1,length(dx),by=5) +normalization <- preProcess(dx) +dx <- predict(normalization, dx) +dx <- as.data.frame(dx) + +if (arg4 == "lmFuncs"){ +ctrl1 <- rfeControl(functions = lmFuncs, + method = arg5 , + repeats = as.numeric(arg6), + number = as.numeric(arg7), + verbose = FALSE) +} else if(arg4 == "rfFuncs"){ +ctrl1 <- rfeControl(functions = rfFuncs, + method = arg5 , + repeats = as.numeric(arg6), + number = as.numeric(arg7), + verbose = FALSE) +}else if (arg4 == "treebagFuncs"){ +ctrl1 <- rfeControl(functions = treebagFuncs, + method = arg5 , + repeats = as.numeric(arg6), + number = as.numeric(arg7), + verbose = FALSE) +}else { + +ctrl1 <- rfeControl(functions = nbFuncs, + method = arg5 , + repeats = as.numeric(arg6), + number = as.numeric(arg7), + verbose = FALSE) +} + + + +if (as.numeric(arg10) == 1){ +Profile <- rfe(dx, dy,sizes = subsets,rfeControl = ctrl1) + +pred11 <- predictors(Profile) +save(Profile,file=arg2) +dataX <- rawData[,pred11] +dataY <- rawData$outcome + +save(dataX,dataY,file=arg3) +rm(dataX) +rm(dataY) +} else if (as.numeric(arg10) > 1){ +registerDoMC(cores = as.numeric(arg10)) + +Profile <- rfe(dx, dy,sizes = subsets,rfeControl = ctrl1) + +pred11 <- predictors(Profile) +save(Profile,file=arg2) +dataX <- rawData[,pred11] +dataY <- rawData$outcome + +save(dataX,dataY,file=arg3) +rm(dataX) +rm(dataY) +} else { stop("something went wrong. please see the parameters")} + +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/feature_selection.xml Fri Jun 01 05:16:19 2018 -0400 @@ -0,0 +1,96 @@ +<tool id="feature_selection" name="Feature Selector" version="1.0"> +<description> + This tool selects best features which are used as input for model building. +</description> + +<requirements> + <requirement type="package" version="3.2.1">R</requirement> + <requirement type="package" version="1.0">carettools</requirement> +</requirements> + +<stdio> + <exit_code range="1:" /> +</stdio> + +<command interpreter="Rscript">feature_selection.R $input $profile $finalset $function1 $resampling $repeat $number $corcutoff $SAMPLING \${GALAXY_SLOTS:-1} >/dev/null 2>&1 </command> + +<inputs> + <param name="input" type="data" format="rdata" label="Select input data file" help="input .RData file" /> + <param name="SAMPLING" type="select" label="Select Sampling Method for imbalanced data" help="Defualt is with No sampling. you may choose downsample or upsample" > + <option value="garBage" selected="true">No Sampling</option> + <option value="downsampling">downsample</option> + <option value="upsampling">upsample</option> + </param> + <param name="function1" type="select" display="radio" label="Select appropriate function for algorithm" > + <option value="rfFuncs" selected="true">random forest based function </option> + <option value="lmFuncs">linear model based function</option> + <option value="treebagFuncs">treebag(CART) based function</option> + <option value="nbFuncs">neive bayes based function</option> + </param> + + <param name="corcutoff" type="float" value= "0.8" min="0.0" max = "1.0" label="Select correlation cutoff" help="values bewteen 0-1. fileds above cufoff value removed from data " /> + <param name="resampling" type="select" label="Select appropriate resampling method" > + <option value="repeatedcv" selected="true">repeatedcv </option> + <option value="boot">boot</option> + <option value="cv">cv</option> + <option value="boot632">boot632</option> + </param> + + <param name="repeat" type="select" label="Set Number of times to repeat" help="default is 3 "> + <option value="3" selected="true">3</option> + <option value="5">5</option> + <option value="7">7</option> + <option value="10">10</option> + </param> + <param name="number" type="select" label="Set Number of times Resample" help="default is 10"> + <option value="10" selected="true">10</option> + <option value="5">5</option> + <option value="15">15</option> + <option value="20">20</option> + <option value="25">25</option> + </param> +</inputs> + +<outputs> + <data format="data" name="profile" label="$function1-profile" /> + <data format="rdata" name="finalset" label="Selected_feature.RData "/> +</outputs> + +<tests> + <test> + <param name="input" value="testinput.RData"/> + <param name="function1" value="rfFuncs" /> + <param name="corcutoff" value="0.6" /> + <param name="resampling" value="repeatedcv" /> + <param name="repeat" value="1" /> + <param name="number" value="5" /> + <param name="SAMPLING" value="garb" /> + <param name="cores" value="1" /> + <output name="profile" file="rfprofile.RData" compare="sim_size" delta="2000000" /> + <output name="finalset" file="selected_fet.RData" compare="sim_size" delta="2000000"/> + </test> +</tests> + +<help> + +.. class:: infomark + +**RFE based feature selection for classification and regression** + +Input file must be RData file obtained by converting csv file in to RData. + +output "Selected_feature.RData" file used for model building purpose.While profile + +represents feature selection model. + +Correlation cutoff value is desired for choosing independent variables For example + +Cutoff value = 0.8 removes all descriptors sharing equal or highet correlation values. + +User may choose varous resampling methods in combination with repeats and times of resample. + +</help> + + + +</tool>
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/tool_dependencies.xml Fri Jun 01 05:16:19 2018 -0400 @@ -0,0 +1,9 @@ +<?xml version="1.0"?> +<tool_dependency> + <package name="R" version="3.2.1"> + <repository changeset_revision="d9f7d84125b7" name="package_r_3_2_1" owner="iuc" prior_installation_required="True" toolshed="https://toolshed.g2.bx.psu.edu/" /> + </package> + <package name="carettools" version="1.0"> + <repository changeset_revision="d8ebc06d55ca" name="package_carettools_1_0" owner="anmoljh" prior_installation_required="True" toolshed="https://toolshed.g2.bx.psu.edu/" /> + </package> +</tool_dependency>