Mercurial > repos > anmoljh > rcaret_classification_model
view modelBuilding.py @ 0:2cb81da69c73 draft
planemo upload commit a1f4dd8eb560c649391ada1a6bb9505893a35272
author | anmoljh |
---|---|
date | Thu, 31 May 2018 11:58:59 -0400 |
parents | |
children |
line wrap: on
line source
def __inputArguments(): import argparse parser = argparse.ArgumentParser() parser.add_argument("--method", nargs='?',default ='pls',help="Name of the method on which model will build; \ Available Methods are:- pls, glm , glmboost ") parser.add_argument("rdata",help="Descriptor file for model building") parser.add_argument("--getdatainfoeval",nargs='?',default='TRUE',help="Validation of the data ") parser.add_argument("--getdatainfoecho",nargs='?',default='FALSE',help="print on consol about Validity of the data ") parser.add_argument("--getdatainforesult",nargs='?',default='hide',help="print in output file about Validity of the data ") parser.add_argument("--missingfiltereval",nargs='?',default='FALSE',help="Processing step :: removal of missing value ") parser.add_argument("--missingfilterecho",nargs='?',default='FALSE',help="print Processing step :: removal of missing value ") parser.add_argument("--missingfilterresult",nargs='?',default='hide',help="print in output file about Processing step :: removal of missing value ") parser.add_argument("--missingfilterthreshc",nargs='?',default=0.20,type=float,help="info about highly missing column data") parser.add_argument("--missingfilterthreshr",nargs='?',default=0.20,type=float,help="info about highly missing row number") parser.add_argument("--pcaeval",nargs='?',default='FALSE',help="PCA of data ") parser.add_argument("--pcaecho",nargs='?',default='FALSE',help="PCA of data ") parser.add_argument("--pcaresult",nargs='?',default='hide',help="print in file about PCA of data ") parser.add_argument("--pcacomp",nargs='?',default=3,type=int,help="Number of PCA componant will be plotted ") parser.add_argument("--pcaploteval",nargs='?',default='FALSE',help="PCA plot of data ") parser.add_argument("--pcaplotecho",nargs='?',default='FALSE',help="print PCA plot of data ") parser.add_argument("--pcaplotresult",nargs='?',default='hide',help="write in output file about PCA plot of data") parser.add_argument("--pcaplotfig",nargs='?',default='TRUE',help="make figure file for integration in output file") parser.add_argument("--initialdataspliteval",nargs='?',default='TRUE',help="data splitting in test and train set ") parser.add_argument("--initialdatasplitecho",nargs='?',default='FALSE',help="print about data splitting in test and train set") parser.add_argument("--initialdatasplitresult",nargs='?',default='hide',help="write in outputfile about data splitting in test and train set") parser.add_argument("--saampling",nargs='?',default="garBage",help="Perform sampling from data") parser.add_argument("--percent",nargs='?',default=0.8,type=float,help="percent value at which data splitting is done") parser.add_argument("--nzveval",nargs='?',default='FALSE',help="remove near zero values") parser.add_argument("--nzvresult",nargs='?',default='hide',help="write in outputfile about removing near zero values") parser.add_argument("--nzvecho",nargs='?',default='FALSE',help="print about removing near zero values") parser.add_argument("--corrfiltereval",nargs='?',default='FALSE',help="remove higly correlated values") parser.add_argument("--corrfilterresult",nargs='?',default='hide',help="write in outputfile about removing highly correlated values") parser.add_argument("--corrfilterecho",nargs='?',default='FALSE',help="print about removing correlated values") parser.add_argument("--threshholdcor",nargs='?',default=0.75,type=float,help="percent value at which correlated values ommitted ") parser.add_argument("--preproceval",nargs='?',default='FALSE',help="pre proccesing") parser.add_argument("--preprocecho",nargs='?',default='FALSE',help="print about pre proccesing") parser.add_argument("--preprocresult",nargs='?',default='hide',help="write in output file about pre proccesing") parser.add_argument("--setupworkersecho",nargs='?',default='FALSE',help="print about number of processors") parser.add_argument("--setupworkersresult",nargs='?',default='tex',help="write about number of processors in output file") parser.add_argument("--numworkers",nargs='?',default=1,type=int,help="defines used processors") parser.add_argument("--setupresamplingecho",nargs='?',default='FALSE',help="print resampling rules") parser.add_argument("--setupresamplingresult",nargs='?',default='hide',help="write resampling rules in output file") parser.add_argument("--resampname",nargs='?',default='boot632',help="choose type of resampling") parser.add_argument("--resamplenumber",nargs='?',default=10,type=int,help="set number of resampling") parser.add_argument("--numrepeat",nargs='?',default=3,type=int,help="set times of repeat") parser.add_argument("--resamplenumberpercent",nargs='?',default=0.75,type=float,help="set PERCENT resampling") parser.add_argument("--setupgridresult",nargs='?',default='hide',help="write about number of grids in output file") parser.add_argument("--setupgridecho",nargs='?',default='FALSE',help="print about number of grids") parser.add_argument("--setupgridsize",nargs='?',default=3,type=int,help="set number of grids") parser.add_argument("--fitmodelresult",nargs='?',default='hide',help="write about model") parser.add_argument("--fitmodelecho",nargs='?',default='FALSE',help="print about model") parser.add_argument("--fitmodeleval",nargs='?',default='TRUE',help="start model building") parser.add_argument("--modeldescrecho",nargs='?',default='FALSE',help="print model description") parser.add_argument("--modeldescrresult",nargs='?',default='hide',help="write model description in outout file") parser.add_argument("--resamptableecho",nargs='?',default='FALSE',help="print resample table") parser.add_argument("--resamptableresult",nargs='?',default='tex',help="write resample table in output file") parser.add_argument("--profileplotecho",nargs='?',default='FALSE',help="print about profile plots") parser.add_argument("--profileplotfig",nargs='?',default='TRUE',help=" profile plots") parser.add_argument("--stopworkersecho",nargs='?',default='FALSE',help="stop workers ie processors") parser.add_argument("--stopworkersresult",nargs='?',default='hide',help="write about workers ie processors used") parser.add_argument("--testpredresult",nargs='?',default='tex',help="write about statistical measure") parser.add_argument("--testpredecho",nargs='?',default='FALSE',help="print about statistical measure") parser.add_argument("--classprobstexresult",nargs='?',default='tex',help="paste various figure of statistical measure in outputfile") parser.add_argument("--classprobstexecho",nargs='?',default='FALSE',help="print various figure of statistical measure") parser.add_argument("--classprobstexresult1",nargs='?',default='hide',help="create roc curve in outputfile") parser.add_argument("--classprobstexecho1",nargs='?',default='FALSE',help="print figure of statistical measure") parser.add_argument("--savedataecho",nargs='?',default='FALSE',help="information about completion of model building ") parser.add_argument("--savedataresult",nargs='?',default='hide',help="write information about completion of model building in outputfile ") parser.add_argument("--datasets", help="name of the generated datasets") parser.add_argument("--outputmodel", help="give name for the generated model") parser.add_argument("--outputresultpdf", help="give name for the output pdf file") args = parser.parse_args() return args def generateRnwScript(): import templateLibrary t = templateLibrary.__template4Rnw() from string import Template s = Template(t) args = __inputArguments() templt = s.safe_substitute(METHOD=args.method, RDATA=args.rdata, GETDATAINFOEVAL=args.getdatainfoeval, GETDATAINFOECHO=args.getdatainfoecho, GETDATAINFORESULT=args.getdatainforesult, MISSINGFILTEREVAL=args.missingfiltereval, MISSINGFILTERECHO=args.missingfilterecho, MISSINGFILTERRESULT=args.missingfilterresult, MISSINGFILTERTHRESHC=args.missingfilterthreshc, MISSINGFILTERTHRESHR=args.missingfilterthreshr, PCAEVAL=args.pcaeval, PCAECHO=args.pcaecho, PCARESULT=args.pcaresult, PCACOMP=args.pcacomp, PCAPLOTEVAL=args.pcaploteval, PCAPLOTECHO=args.pcaplotecho, PCAPLOTRESULT=args.pcaplotresult, PCAPLOTFIG=args.pcaplotfig, INITIALDATASPLITEVAL=args.initialdataspliteval, INITIALDATASPLITECHO=args.initialdatasplitecho, INITIALDATASPLITRESULT=args.initialdatasplitresult, SAAMPLING=args.saampling, PERCENT=args.percent, NZVEVAL=args.nzveval, NZVRESULT=args.nzvresult, NZVECHO=args.nzvecho, CORRFILTEREVAL=args.corrfiltereval, CORRFILTERRESULT=args.corrfilterresult, CORRFILTERECHO=args.corrfilterecho, THRESHHOLDCOR=args.threshholdcor, PREPROCEVAL=args.preproceval, PREPROCECHO=args.preprocecho, PREPROCRESULT=args.preprocresult, SETUPWORKERSECHO=args.setupworkersecho, SETUPWORKERSRESULT=args.setupworkersresult, NUMWORKERS=args.numworkers, SETUPRESAMPLINGECHO=args.setupresamplingecho, SETUPRESAMPLINGRESULT=args.setupresamplingresult, RESAMPNAME=args.resampname, RESAMPLENUMBER=args.resamplenumber, NUMREPEAT=args.numrepeat, RESAMPLENUMBERPERCENT=args.resamplenumberpercent, SETUPGRIDRESULT=args.setupgridresult, SETUPGRIDECHO=args.setupgridecho, SETUPGRIDSIZE=args.setupgridsize, FITMODELRESULT=args.fitmodelresult, FITMODELECHO=args.fitmodelecho, FITMODELEVAL=args.fitmodeleval, MODELDESCRECHO=args.modeldescrecho, MODELDESCRRESULT=args.modeldescrresult, RESAMPTABLEECHO=args.resamptableecho, RESAMPTABLERESULT=args.resamptableresult, PROFILEPLOTECHO=args.profileplotecho, PROFILEPLOTFIG=args.profileplotfig, STOPWORKERSECHO=args.stopworkersecho, STOPWORKERSRESULT=args.stopworkersresult, TESTPREDRESULT=args.testpredresult, TESTPREDECHO=args.testpredecho, CLASSPROBSTEXRESULT=args.classprobstexresult, CLASSPROBSTEXECHO=args.classprobstexecho, CLASSPROBSTEXRESULT1=args.classprobstexresult1, CLASSPROBSTEXECHO1=args.classprobstexecho1, SAVEDATAECHO=args.savedataecho, SAVEDATARESULT=args.savedataresult ) f = open('result-doc.Rnw','w') f.write(templt) f.close() def modelBuilding(): import os os.system('R CMD Sweave result-doc.Rnw > cmd.log.1 2>&1') os.system('R CMD pdflatex result-doc.tex > cmd.log.2 2>&1') os.system('R CMD pdflatex result-doc.tex > cmd.log.2 2>&1') args = __inputArguments() from string import Template s1 = Template('cp $METHOD-Fit.RData $OUTPUTMODEL') s2 = Template('cp result-doc.pdf $OUTPUTRESULTPDF') s3 = Template('cp datasets.RData $DATASETS') cmd1 = s1.safe_substitute(METHOD=args.method, OUTPUTMODEL=args.outputmodel) cmd2 = s2.safe_substitute(OUTPUTRESULTPDF=args.outputresultpdf) cmd3 = s3.safe_substitute(DATASETS=args.datasets) os.system(cmd1) os.system(cmd2) os.system(cmd3) if __name__ == "__main__" : generateRnwScript() modelBuilding()