Mercurial > repos > arkarachai-fungtammasan > microsatellite_ngs
view heteroprob.py @ 3:7cc220e8c2ac
Uploaded
author | arkarachai-fungtammasan |
---|---|
date | Fri, 24 Oct 2014 15:45:00 -0400 |
parents | 20ab85af9505 |
children |
line wrap: on
line source
### import libraries ### import sys import collections, math import heapq import itertools ### basic function ### def permuterepeat(n,rlist): f = math.factorial nfac=f(n) rfaclist=[f(i) for i in rlist] for rfac in rfaclist: nfac=nfac/rfac return nfac def nCr(n,r): f = math.factorial return f(n) / f(r) / f(n-r) def averagelist(a,b,expectedlevelofminor): product=[] for i in range(len(a)): product.append((1-expectedlevelofminor)*a[i]+expectedlevelofminor*b[i]) return product def complement_base(read): collect='' for i in read: if i.upper()=='A': collect+='T' elif i.upper()=='T': collect+='A' elif i.upper()=='C': collect+='G' elif i.upper()=='G': collect+='C' return collect def makeallpossible(read): collect=[] for i in range(len(read)): tmp= read[i:]+read[:i] collect.append(tmp) collect.append(complement_base(tmp)) return collect def motifsimplify(base): '''str--> str ''' motiflength=len(base) temp=list(set(ALLMOTIF[motiflength]).intersection(set(makeallpossible(base)))) return temp[0] def majorallele(seq): binseq=list(set(seq)) binseq.sort(reverse=True) # highly mutate mode #binseq.sort() # majority mode storeform='' storevalue=0 for i in binseq: if seq.count(i)>storevalue: storeform=i storevalue=seq.count(i) return int(storeform) ### decide global parameter ### COORDINATECOLUMN=1 ALLELECOLUMN=2 MOTIFCOLUMN=3 inputname=sys.argv[1] errorprofile=sys.argv[2] EXPECTEDLEVELOFMINOR=float(sys.argv[3]) if EXPECTEDLEVELOFMINOR >0.5: try: errorexpectcontribution=int('a') except Exception, eee: print eee stop_err("Expected contribution of minor allele must be at least 0 and not more than 0.5") MINIMUMMUTABLE=0 ###1.2*(1.0/(10**8)) #http://www.ncbi.nlm.nih.gov/pubmed/22914163 Kong et al 2012 ## Fixed global variable ALLREPEATTYPE=[1,2,3,4] ALLREPEATTYPENAME=['mono','di','tri','tetra'] monomotif=['A','C'] dimotif=['AC','AG','AT','CG'] trimotif=['AAC','AAG','AAT','ACC','ACG','ACT','AGC','AGG','ATC','CCG'] tetramotif=['AAAC','AAAG','AAAT','AACC','AACG','AACT','AAGC','AAGG','AAGT','AATC','AATG','AATT',\ 'ACAG','ACAT','ACCC','ACCG','ACCT','ACGC','ACGG','ACGT','ACTC','ACTG','AGAT','AGCC','AGCG','AGCT',\ 'AGGC','AGGG','ATCC','ATCG','ATGC','CCCG','CCGG','AGTC'] ALLMOTIF={1:monomotif,2:dimotif,3:trimotif,4:tetramotif} monorange=range(5,60) dirange=range(6,60) trirange=range(9,60) tetrarange=range(12,80) ALLRANGE={1:monorange,2:dirange,3:trirange,4:tetrarange} ######################################### ######## Prob calculation sector ######## ######################################### def multinomial_prob(majorallele,STRlength,motif,probdatabase): '''int,int,str,dict-->int ### get prob for each STRlength to be generated from major allele ''' #print (majorallele,STRlength,motif) prob=probdatabase[len(motif)][motif][majorallele][STRlength] return prob ################################################ ######## error model database sector ########### ################################################ ## structure generator errormodeldatabase={1:{},2:{},3:{},4:{}} sumbymajoralleledatabase={1:{},2:{},3:{},4:{}} for repeattype in ALLREPEATTYPE: for motif in ALLMOTIF[repeattype]: errormodeldatabase[repeattype][motif]={} sumbymajoralleledatabase[repeattype][motif]={} for motifsize1 in ALLRANGE[repeattype]: errormodeldatabase[repeattype][motif][motifsize1]={} sumbymajoralleledatabase[repeattype][motif][motifsize1]=0 for motifsize2 in ALLRANGE[repeattype]: errormodeldatabase[repeattype][motif][motifsize1][motifsize2]=MINIMUMMUTABLE #print errormodeldatabase ## read database ## get read count for each major allele fd=open(errorprofile) lines=fd.readlines() for line in lines: temp=line.strip().split('\t') t_major=int(temp[0]) t_count=int(temp[2]) motif=temp[3] sumbymajoralleledatabase[len(motif)][motif][t_major]+=t_count fd.close() ##print sumbymajoralleledatabase ## get probability fd=open(errorprofile) lines=fd.readlines() for line in lines: temp=line.strip().split('\t') t_major=int(temp[0]) t_read=int(temp[1]) t_count=int(temp[2]) motif=temp[3] if sumbymajoralleledatabase[len(motif)][motif][t_major]>0: errormodeldatabase[len(motif)][motif][t_major][t_read]=t_count/(sumbymajoralleledatabase[len(motif)][motif][t_major]*1.0) #errormodeldatabase[repeattype][motif][t_major][t_read]=math.log(t_count/(sumbymajorallele[t_major]*1.0)) #else: # errormodeldatabase[repeattype][motif][t_major][t_read]=0 fd.close() #print errormodeldatabase #print math.log(100,10) ######################################### ######## input reading sector ########### ######################################### fd = open(inputname) ##fd=open('sampleinput_C.txt') lines=fd.xreadlines() for line in lines: i_read=[] i2_read=[] temp=line.strip().split('\t') i_coordinate=temp[COORDINATECOLUMN-1] i_motif=motifsimplify(temp[MOTIFCOLUMN-1]) i_read=temp[ALLELECOLUMN-1].split(',') i_read=map(int,i_read) depth=len(i_read) heteromajor1=int(temp[6]) heteromajor2=int(temp[7]) ### calculate the change to detect combination (using error profile) heterozygous_collector=0 alist=[multinomial_prob(heteromajor1,x,i_motif,errormodeldatabase)for x in i_read] blist=[multinomial_prob(heteromajor2,x,i_motif,errormodeldatabase)for x in i_read] ablist=averagelist(alist,blist,EXPECTEDLEVELOFMINOR) if 0 in ablist: continue heterozygous_collector=reduce(lambda y, z: y*z,ablist ) ### prob of combination (using multinomial distribution) frequency_distribution=[len(list(group)) for key, group in itertools.groupby(i_read)] ## print frequency_distribution expandbypermutation=permuterepeat(depth,frequency_distribution) print line.strip()+'\t'+str(heterozygous_collector)+'\t'+str(expandbypermutation)+'\t'+str(expandbypermutation*heterozygous_collector)+'\t'+str(depth)