Mercurial > repos > arkarachai-fungtammasan > microsatellite_ngs
view test-data/microsatellite.py @ 4:ecfc9041bcc5
Deleted selected files
author | arkarachai-fungtammasan |
---|---|
date | Wed, 01 Apr 2015 14:05:54 -0400 |
parents | |
children |
line wrap: on
line source
#!/usr/bin/env python """ Snoop thru a fasta file looking for microsatellite repeats of given periods Output format: length_of_repeat left_flank_length right_flank_length repeat_motif hamming_distance read_name read_sequence read_quality (additional columns) If --r option turned on, output format will have additional columns behind: read_name read_chr pre_s pre_e tr_s tr_e suf_s suf_e tr_len tr_ref_seq pre_s where the read start pre_e the last position before microsatellite tr_s where microsatellite start tr_e where microsatellite end suf_s first base after microsatellite tr_ref_seq reference sequence corresponding to microsatellite * output positions are 0 based :Author: Chen Sun (cxs1031@cse.psu.edu); Bob Harris (rsharris@bx.psu.edu) modifing log: 09/27/2013 replace function dense_intervals with function non_negative_intervals, which do not need to import such file. 10/18/2013 modify function find_repeat_element to get a quick speed, under the condition that hamming_distance = 0, which means do not allowed any mutation/indel 02/25/2014 add function that can deal with mapped reads with additional output 02/28/2014 modify the 0-based end point, as in 0-base area, it is half-open [ ) so the 0-based site, should always be added by 1 03/05/2014 deal with multi-fasta """ from sys import argv,stdin,stderr,exit from string import maketrans from md5 import new as md5_new import re #from pyfracluster import dense_intervals def usage(s=None): message = """ usage: microsat_snoop [fasta_file] [options] <fasta_file> Name of file to read sequences from; if absent, sequences are read from stdin --fasta Input file is in fasta format (this is the default) --fastq Input file is in fastq format (default is fasta unless filename is .fastq) --fastq:noquals Input file is in fastq format, but discard quals --sam Input file is SAM file --r Indicate additional output information, if indicated, --ref option is mendatory --ref=<filepath> Reference file (absolute) path --period=<length> (mandatory,cumulative) repeat length(s) to be searched for <length> is expected to be small, less than 10 <length> can also be a comma-separated list, or a range <low>..<high> --rate=<fraction> control the candidate repeat interval detector; it will consider intervals with at least <fraction> of matches when shifted by the period; <fraction> is between 0 and 1 and can be either a real number or <n>/<d> (default is 6/7) --minlength=<length> minimum length of intervals reported, in bp (default is 20) --progress=<count> how often to report the sequence we're searching (default is no progress report) --allowduplicates process all input sequences (this is the default) --noduplicates ignore any input sequence that's the same as an earlier sequence --nonearduplicates ignore any input sequence that has the same first 100 bp as an earlier sequence --nonearduplicate=<length> ignore any input sequence that has the same first <length> bp as an earlier sequence --hamming=<count> Don't report candidate repeat intervals that have more than <count> mismatches (default is to do no such filtering) --prefix=<length> Don't report candidate repeat intervals that start within <length> of the sequence start (default is to do no such filtering) --suffix=<length> Don't report candidate repeat intervals that end within <length> of the sequence end (default is to do no such filtering) --subsample=<k>/<n> Process only the <k>th sequence of every group of <n> sequences; <k> ranges from 1 to <n> --multipleruns Consider all candidate intervals in a sequence (default is to consider only the longest) --partialmotifs Consider microatelites with a partial motif (default is to consider only whole motifs) --splitbyvalidity Preprocess sequences, splitting at Ns; this prevents candidates from including Ns (default is not to split) --noflankdisplay Show entire sequence as flanking regions (this is the default) --flankdisplay=<length> Limit length of flanking regions shown --readnamesuffix=<string> Root of suffix to append to read names; e.g. 1 for forward, 2 for reverse; this triggers other info to be included in the suffix (default is "1" for fastq; no suffix for fasta) --head=<number> limit the number of sequences processed --markend Write a marker line upon completion (default is not to write a marker) --help=details Describe the process, and quit""" if (s == None): exit (message) else: exit ("%s\n%s" % (s,message)) detailedDescription = """In broad terms, the process works as follows: (1) Identify intervals that are highly correlated with the interval shifted by P (the repeat period). These intervals are called "runs" or "candidates". The level of correlation required is controlled by rateThreshold. Depending on whether we want to look for more than one microsat, we either find the longest such run (simple algorithm) or many runs (more complicated algorithm). The following steps are then performed on each run. (2) Find the most likely repeat motif in the run. This is done by counting all kmers (of length P) and choosing the most frequent. If that kmer is itself covered by a sub-repeat we discard this run. The idea is that we can ignore a 6-mer like ACGACG because we will find it when we are looking for 3-mers. (3) Once we identify the most likely repeat motif, we then modify the interval, adjusting start and end to find the interval that has the fewest mismatches vs. a sequence of the motif repeated (hamming distance). Only whole copies of the motif are considered. (4) At this point we have a valid microsat interval (in the eyes of the program). It is subjected to some filtering stages (hamming distance or too close to an end), and if it satisfies those conditions, it's reported to the user.""" def main(): global debug #=== parse the command line === inputFilename = None referenceFileName = None #add by Chen Sun on 02/25 inputFormat = None repeatPeriods = [] rateThreshold = 6 / 7.0 lengthThreshold = 20 reportProgress = None discardDuplicates = False discardNearDuplicates = False nearDuplicatePrefix = 100 hammingThreshold = 0 prefixThreshold = None suffixThreshold = None subsampleK = None subsampleN = None reportMultipleRuns = False allowPartialMotifs = False splitByValidity = False flankDisplayLimit = None readNameSuffix = None headLimit = None markEndOfFile = False additionalInfo = False debug = [] for arg in argv[1:]: if (arg == "--fasta"): inputFormat = "fasta" elif (arg == "--fastq"): inputFormat = "fastq" elif (arg == "--fastq:noquals"): inputFormat = "fastq:noquals" elif (arg == "--sam"): inputFormat = "sam" elif (arg == "--r"): additionalInfo = True elif (arg.startswith("--ref=")): referenceFileName = arg.split("=",1)[1] elif (arg.startswith("--period=")): val = arg.split("=",1)[1] for period in val.split(","): if (".." in period): (lowPeriod,highPeriod) = period.split("..",1) lowPeriod = int(lowPeriod) highPeriod = int(highPeriod) for period in xrange(lowPeriod,highPeriod+1): repeatPeriods += [period] else: repeatPeriods += [int(period)] elif (arg.startswith("--rate=")): val = arg.split("=",1)[1] rateThreshold = float_or_fraction(val) assert (0.0 < rateThreshold <= 1.0), "%s not a valid rate" % val elif (arg.startswith("--minlength=")): val = arg.split("=",1)[1] lengthThreshold = int(val) assert (lengthThreshold >= 0) elif (arg.startswith("--progress=")): val = arg.split("=",1)[1] reportProgress = int(val) elif (arg == "--allowduplicates"): discardDuplicates = False discardNearDuplicates = False elif (arg == "--noduplicates"): discardDuplicates = True discardNearDuplicates = False elif (arg == "--nonearduplicates"): discardDuplicates = False discardNearDuplicates = True elif (arg.startswith("--nonearduplicate=")): val = arg.split("=",1)[1] discardDuplicates = False discardNearDuplicates = True nearDuplicatePrefix = int(val) assert (nearDuplicatePrefix > 0) elif (arg.startswith("--hamming=")): val = arg.split("=",1)[1] hammingThreshold = int(val) assert (hammingThreshold >= 0) elif (arg.startswith("--prefix=")): val = arg.split("=",1)[1] prefixThreshold = int(val) assert (prefixThreshold >= 0) elif (arg.startswith("--suffix=")): val = arg.split("=",1)[1] suffixThreshold = int(val) assert (suffixThreshold >= 0) elif (arg.startswith("--subsample=")): val = arg.split("=",1)[1] (k,n) = val.split("/",2) subsampleK = int(k) subsampleN = int(n) assert (0 < subsampleK <= subsampleN) elif (arg == "--multipleruns"): reportMultipleRuns = True elif (arg == "--partialmotifs"): allowPartialMotifs = True elif (arg == "--splitbyvalidity"): splitByValidity = True elif (arg == "--noflankdisplay"): flankDisplayLimit = None elif (arg.startswith("--flankdisplay=")): val = arg.split("=",1)[1] flankDisplayLimit = int(val) assert (flankDisplayLimit >= 0) elif (arg.startswith("--readnamesuffix")): readNameSuffix = arg.split("=",1)[1] elif (arg.startswith("--head=")): headLimit = int_with_unit(arg.split("=",1)[1]) elif (arg == "--markend"): markEndOfFile = True elif (arg == "--help=details"): exit (detailedDescription) elif (arg.startswith("--debug=")): debug += (arg.split("=",1)[1]).split(",") elif (arg.startswith("--")): usage("unrecognized option: %s" % arg) elif (inputFilename == None): inputFilename = arg else: usage("unrecognized option: %s" % arg) #=== determine periods of interest === if (repeatPeriods == []): usage("you gotta give me a repeat period") if (additionalInfo == True): if (referenceFileName == None): usage("reference file path needed. use --ref=<reference> to indicate") periodSeed = {} for period in repeatPeriods: if (period < 1): usage("period %d is not valid" % period) periodSeed[period] = True repeatPeriods = [period for period in periodSeed] repeatPeriods.sort() #=== determine input format === if (inputFormat == "fasta"): sequence_reader = fasta_sequences elif (inputFormat == "fastq"): sequence_reader = fastq_sequences elif (inputFormat == "fastq:noquals"): sequence_reader = fastq_sequences elif (inputFormat == "sam"): sequence_reader = sam_sequences elif (inputFilename == None): sequence_reader = fasta_sequences elif (inputFilename.endswith(".fastq")): sequence_reader = fastq_sequences elif (inputFilename.endswith(".fq")): sequence_reader = fastq_sequences elif (inputFilename.endswith(".sam")): sequence_reader = sam_sequences else: sequence_reader = fasta_sequences if (inputFilename != None): inputF = file(inputFilename,"rt") else: inputF = stdin if (readNameSuffix == None) \ and (sequence_reader == fastq_sequences) \ and (inputFormat != "fastq:noquals"): readNameSuffix = "1" #=== process the sequences === refSequence = {} rightName = "" sequence = "" if additionalInfo: firstFasta = True originalRefF = open(referenceFileName) for line in originalRefF.readlines(): line = line.replace('\r','') line = line.replace('\n','') if line.startswith(">"): if firstFasta: firstFasta = False else: refSequence[rightName] = sequence rightName = line[1:] sequence = "" continue sequence += line originalRefF.close() refSequence[rightName] = sequence sequenceSeen = {} numSequences = 0 for seqInfo in sequence_reader(inputF): numSequences += 1 if (headLimit != None) and (numSequences > headLimit): print >>stderr, "limit of %d sequences reached" % headLimit break if (sequence_reader == sam_sequences): #seqName,"".join(seqNucs).upper().translate(nonDnaMap), refName, pre_s, cigar (name, sequence, refName, pre_s, cigar) = seqInfo quals = None elif (sequence_reader == fastq_sequences): (name,sequence,quals) = seqInfo if (inputFormat == "fastq:noquals"): quals = None else: (name,sequence) = seqInfo quals = None if (reportProgress != None) and (numSequences % reportProgress == 0): print >>stderr, "%s %d" % (name,numSequences) # if we're subsampling and not interested in this sequence, skip it if (subsampleN != None): if ((numSequences-1) % subsampleN != (subsampleK-1)): continue # if this sequence is shorter than the length of interest, skip it seqLen = len(sequence) if (seqLen < period) or (seqLen < lengthThreshold): continue # if we're not interested in duplicates and this is one, skip it; # note that we assume no hash collisions occur, i.e. that all hash # matches are truly sequence matches if (discardDuplicates): h = hash108(sequence) if (h in sequenceSeen): continue sequenceSeen[h] = True elif (discardNearDuplicates): h = hash108(sequence[:nearDuplicatePrefix]) if (h in sequenceSeen): continue sequenceSeen[h] = True # split the sequence into chunks of valid nucleotides if (splitByValidity): chunks = [(start,end) for (start,end) in nucleotide_runs(sequence)] else: chunks = [(0,len(sequence))] # evaluate for each period of interest for period in repeatPeriods: # operate on each chunk for (chunkStart,chunkEnd) in chunks: chunkLen = chunkEnd - chunkStart if (chunkLen < period) or (chunkLen < lengthThreshold): continue if ("validity" in debug) or ("correlation" in debug) or ("runs" in debug): print >>stderr, ">%s_%d_%d" % (name,chunkStart,chunkEnd) # compute correlation sequence corr = correlation_sequence(sequence,period,chunkStart,chunkEnd) if ("correlation" in debug) or ("runs" in debug): print >>stderr, sequence[chunkStart:chunkEnd] print >>stderr, corr # find runs (candidates for being a microsat) if (reportMultipleRuns): runs = all_suitable_runs(corr,lengthThreshold-period,rateThreshold, hammingThreshold) else: runs = longest_suitable_run(corr,lengthThreshold,rateThreshold) if (runs == []): continue if ("runs" in debug): for (start,end) in runs: run = [" "] * seqLen for ix in xrange(start-period,end): run[ix] = "*" print >>stderr, "".join(run) if ("candidates" in debug): for (start,end) in runs: print >>stderr, "%s %d %d" % (name,start,end) # process runs and report those that pass muster runCount = 0 for (start,end) in runs: runCount += 1 start = chunkStart + start - period end = chunkStart + end (kmer,d,start,end) = find_repeat_element(hammingThreshold, period,sequence,start,end,allowPartials=allowPartialMotifs) if (kmer == None): continue # (no useful repeat kmer was found) rptExtent = end - start prefixLen = start suffixLen = seqLen - end if (rptExtent <= period): continue if (hammingThreshold != None) and (d > hammingThreshold): continue if (prefixThreshold != None) and (prefixLen < prefixThreshold): continue if (suffixThreshold != None) and (suffixLen < suffixThreshold): continue if (flankDisplayLimit == None): seq = sequence[:start] \ + sequence[start:end].lower() \ + sequence[end:] else: seq = sequence[max(chunkStart,start-flankDisplayLimit):start] \ + sequence[start:end].lower() \ + sequence[end:min(chunkEnd,end+flankDisplayLimit)] reportName = name if (readNameSuffix != None): reportName += "_"+readNameSuffix+"_per"+str(period)+"_"+str(runCount) if (quals == None or quals == "." or quals == "\t."): quals = "\t." else: quals = "\t" + quals if not additionalInfo: print "%d\t%d\t%d\t%s\t%d\t%s\t%s%s" \ % (rptExtent,prefixLen,suffixLen,kmer,d,reportName,seq,quals) else: #pre_e = pre_s + prefixLen - 1 refPoint = pre_s donorPoint = 0 donorBeforeStart = prefixLen - 1 #pre_e donorMicroStart = prefixLen #tr_s donorMicroEnd = donorMicroStart + rptExtent - 1 #tr_e donorAfterMicro = donorMicroEnd + 1 #suf_s donorEnd = len(seq) - 1 #suf_e set_pre_e = False set_tr_s = False set_tr_e = False set_suf_s = False set_suf_e = False pre_e = 0 tr_s = 0 tr_e = 0 suf_s = 0 suf_e = 0 matchList = re.findall('(\d+)([IDM])', cigar) unCognitiveCigar = False for matchN, matchType in matchList: matchNum = int(matchN) if matchType == "M": donorPoint = donorPoint + matchNum refPoint = refPoint + matchNum elif matchType == "D": refPoint = refPoint + matchNum continue elif matchType == "I": donorPoint = donorPoint + matchNum else: unCognitiveCigar = True break if not set_pre_e: if donorPoint >= donorBeforeStart: pre_e = refPoint - (donorPoint - donorBeforeStart) set_pre_e = True else: continue if not set_tr_s: if donorPoint >= donorMicroStart: tr_s = refPoint - (donorPoint - donorMicroStart) set_tr_s = True else: continue if not set_tr_e: if donorPoint >= donorMicroEnd: tr_e = refPoint - (donorPoint - donorMicroEnd) set_tr_e = True else: continue if not set_suf_s: if donorPoint >= donorAfterMicro: suf_s = refPoint - (donorPoint - donorAfterMicro) set_suf_s = True else: continue if not set_suf_e: if donorPoint >= donorEnd: suf_e = refPoint - (donorPoint - donorEnd) set_suf_e = True else: continue if unCognitiveCigar: break tr_len = tr_e - tr_s + 1 if refName not in refSequence: tr_ref_seq = "." else: if refSequence[refName] == "": tr_ref_seq = "." elif len(refSequence[refName]) <= tr_e: tr_ref_seq = "." else: tr_ref_seq = refSequence[refName][tr_s:tr_e+1] pre_e += 1 tr_e += 1 suf_e += 1 print "%d\t%d\t%d\t%s\t%d\t%s\t%s%s\t%s\t%s\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%s" \ % (rptExtent,prefixLen,suffixLen,kmer,d,reportName,seq,quals,reportName,refName,pre_s,pre_e,tr_s,tr_e,suf_s,suf_e,tr_len,tr_ref_seq) if (markEndOfFile): print "# microsat_snoop end-of-file" if (inputF != stdin): inputF.close() # non_negative_intervals # find intervals with exactly + and no - # from string like this : +++++++++---+++++++++ def non_negative_intervals(seq, minLength=None): start = -1 end = -1 firstPlus = 1 #print seq for ix in range(len(seq)): # for every char in seq ch = seq[ix] if(ch == "+"): if(firstPlus): firstPlus = 0 start = ix else: continue elif(ch == "-"): if(start >= 0): end = ix-1 if((end - start + 1) >= minLength): yield (start,end+1) start = -1 firstPlus = 1 if(start > 0): if((ix - start + 1) >= minLength): yield (start, ix+1) ################################################################### # modified by Chen Sun on 7/11/2014 # We do not want other modules, so parse these functions inside # ################################################################### # parse a string of the form {positives}/{positives_and_neutrals} def parse_spec(s): if ("/" not in s): raise ValueError (n,d) = s.split("/",1) if (not n.startswith("{")) or (not n.endswith("}")): raise ValueError if (not d.startswith("{")) or (not d.endswith("}")): raise ValueError positives = n[1:-1] d = d[1:-1] for ch in positives: if (ch not in d): raise ValueError neutrals = [ch for ch in d if (ch not in positives)] return (positives,neutrals) # convert a string to a number, allowing fractions def float_or_fraction(s): if ("/" in s): (numer,denom) = s.split("/",1) return float(numer)/float(denom) else: return float(s) # dense_intervals-- # Find all non-overlapping runs with a good enough rate (of positives), and # which meet our length threshold. # # The algorithm used is adapted from Zhang, Berman, Miller, "Post-processing # long pairwise alignments", Bioinformatics Vol. 15 no. 12 1999. # # $$$ we use the denominator as the threshold, but we really should use the # $$$ .. numerator, comparing it to minLength*rate def dense_intervals(seq,rate,positives,neutrals,blockers="",minLength=None): if (blockers == None): blockers = "".join([chr(n) for n in range(1,256) if (chr(n) not in positives) and (chr(n) not in neutrals)]) stackLeft = [None] # stack with each entry containing five stackRight = [None] # .. elements; note that entry zero is not stackLeftScore = [None] # .. used stackRightScore = [None] stackLower = [None] top = 0 score = 0 for ix in range(len(seq)): ch = seq[ix] if (ch in blockers): # emit intervals for sp in range(1,top+1): left = stackLeft [sp] + 1 right = stackRight[sp] while (left < right) and (seq[left] not in positives): left += 1 while (right > left) and (seq[right] not in positives): right -= 1 right += 1 if (minLength == None) or (right - left >= minLength): yield (left,right) #empty stack stackLeft = [None] stackRight = [None] stackLeftScore = [None] stackRightScore = [None] stackLower = [None] top = 0 score = 0 continue if (ch in positives): weight = 1-rate elif (ch in neutrals): weight = -rate else: raise ValueError score += weight #if ("algorithm" in debug): # print >>sys.stderr, "%3d: %c %5.2f" % (ix, ch, score), if (weight < 0): #if ("algorithm" in debug): # print >>sys.stderr continue if (top > 0) and (stackRight[top] == ix-1): # add this site to the interval on top of the stack stackRight [top] = ix stackRightScore[top] = score #if ("algorithm" in debug): # print >>sys.stderr, \ # " extending [%d] %d-%d %4.1f %4.1f" \ # % (top, # stackLeft [top], stackRight [top], # stackLeftScore[top], stackRightScore[top]), else: # create a one site interval top += 1 if (top >= len(stackLeft)): stackLeft += [None] stackRight += [None] stackLeftScore += [None] stackRightScore += [None] stackLower += [None] stackLeft [top] = ix - 1 stackLeftScore [top] = score - weight stackRight [top] = ix stackRightScore[top] = score stackLower [top] = top - 1 while (stackLower[top] > 0) \ and (stackLeftScore[stackLower[top]] > stackLeftScore[top]): stackLower[top] = stackLower[stackLower[top]] #if ("algorithm" in debug): # print >>sys.stderr, \ # " creating [%d] %d-%d %4.1f %4.1f -> %d" \ # % (top, # stackLeft [top], stackRight [top], # stackLeftScore[top], stackRightScore[top], # stackLower [top]), # merge intervals; if there is a previous interval with a no-higher # left score and no-higher right score, merge this interval (and all # intervening ones) into that one while (top > 1) \ and (stackLower[top] > 0) \ and (stackRightScore[stackLower[top]] <= stackRightScore[top]): stackRight [stackLower[top]] = stackRight [top] stackRightScore[stackLower[top]] = stackRightScore[top] top = stackLower[top] #if ("algorithm" in debug): # print >>sys.stderr, \ # "\n%*s merging [%d] %d-%d %4.1f %4.1f" \ # % (13, "", top, # stackLeft[top], stackRight [top], # stackLeftScore[top], stackRightScore[top]), #if ("algorithm" in debug): # print >>sys.stderr # emit intervals for sp in range(1,top+1): left = stackLeft [sp] + 1 right = stackRight[sp] while (left < right) and (seq[left] not in positives): left += 1 while (right > left) and (seq[right] not in positives): right -= 1 right += 1 if (minLength == None) or (right - left >= minLength): yield (left,right) ################################################################### # modified by Chen Sun on 7/11/2014 # ################################################################### # correlation_sequence-- # Compute the correlation sequence for a given period. This is a sequence # of + and - indicating whether the base at a given position matches the one # P positions earlier (where P is the period). The first P positions are # blank. Positions with single character runs longer than the period are # considered as non-matches, unless the period is 1. def correlation_sequence(sequence,period,start=None,end=None): if (start == None): start = 0 if (end == None): end = len(sequence) prevCh = sequence[start] run = 1 for ix in xrange(start+1,start+period): ch = sequence[ix] if (ch != prevCh): run = 1 else: run += 1 prevCh = ch corr = [" "] * period for ix in xrange(start+period,end): rptCh = sequence[ix-period] ch = sequence[ix] if (ch != prevCh): run = 1 else: run += 1 if (ch in "ACGT") \ and (ch == rptCh) \ and ((period == 1) or (run < period)): corr += ["+"] else: corr += ["-"] prevCh = ch return "".join(corr) # longest_suitable_run-- # Find longest run with a good enough rate (of positives). # # We score a "+" as 1-r and anything else as -r. This is based on the fol- # lowing derivation (p is the number of "+"s, n is the number of non-"+"s): # p/(p+n) >= r # ==> p >= rp + rn # ==> (1-r)p - rn >= 0 # # We adapt an algorithm from "Programming Pearls", pg. 81 (2000 printing). # # $$$ we use the denominator as the threshold, but we really should use the # $$$ .. numerator, comparing it to minLength*rate # # $$$ this needs to account for $$$ this situation: # $$$ sequence: ACGACGACGACGTTATTATTATTA # $$$ matches: +++++++++---+++++++++ # $$$ this is currently considered to be one interval (if rate <= 6/7), but it # $$$ ought to be two; we can't just post-process, though, because some other # $$$ interval might be longer than the longest half of this; maybe what we # $$$ need to do is consider matches at distances -P and -2P, or if we match # $$$ -P but that itself was a mismatch, we should carry the mismatch forward def longest_suitable_run(seq,minLength,rate): maxEndingHere = 0 maxSoFar = 0 start = None for ix in xrange(len(seq)): if (seq[ix] == "+"): s = 1-rate else: s = -rate if (maxEndingHere+s < 0): maxEndingHere = 0 block = ix else: maxEndingHere += s if (maxEndingHere >= maxSoFar): maxSoFar = maxEndingHere start = block + 1 end = ix + 1 if (start == None) or (end - start < minLength): return [] else: return [(start,end)] # all_suitable_runs-- # Find all non-overlapping runs with a good enough rate (of positives), and # which meet our length threshold. # $$$ this needs to post-process the intervals, splitting them to account for # $$$ this situation: # $$$ sequence: ACGACGACGACGTTATTATTATTA # $$$ matches: +++++++++---+++++++++ # $$$ this is currently reported as one interval (if rate <= 6/7), but it # $$$ ought to be two def all_suitable_runs(seq,minCorrLength,rate, hammingThreshold): ################################################################ # modified by Chen Sun on 07/11/2014 # ################################################################ if hammingThreshold > 0: return [(start,end) for (start,end) in dense_intervals(seq,rate,"+","-",blockers=None,minLength=minCorrLength)] elif hammingThreshold == 0: return [(start,end) for (start,end) in non_negative_intervals(seq, minLength=minCorrLength)] # find_repeat_element-- # Find the most plausible repeat element for a run, and nudge the ends of # the run if needed. Note that we will not consider kmers that represent # shorter repeats. For example, we won't report ACTACT as a 6-mer since we # consider this to have a shorter period than 6. def find_repeat_element(hammingThreshold, period,seq,start,end,allowPartials=False): if hammingThreshold > 0: (kmer,bestD,bestStart,bestEnd) = find_hamming_repeat_element(period,seq,start,end,allowPartials) return (kmer,bestD,bestStart,bestEnd) # count the number of occurences of each k-mer; note that we can't # reject kmers containing smaller repeats yet, since for a sequence like # ACACACACACAAACACACACACACACACAC we must first discover ACACAC as the best # 6-mer, and THEN reject it; if we reject ACACAC while counting, we'd end # up reporting something like ACACAA as the best motif if ("element" in debug): print >>stderr, "find_repeat_element(%d,%d,%d)" % (period,start,end) if ("partial" in debug): print period, seq, start, end, allowPartials; print seq[start:end] kmerToCount = {} kmerToFirst = {} for ix in xrange(start,end-(period-1)): kmer = seq[ix:ix+period] if ("N" in kmer): continue if (kmer not in kmerToCount): kmerToCount[kmer] = 1 kmerToFirst[kmer] = ix else: kmerToCount[kmer] += 1 #if ("element" in debug): # print >>stderr, " %d: %s" % (ix,kmer) # choose the best k-mer; this is simply the most frequently occurring one, # with ties broken by whichever one came first kmers = [(-kmerToCount[kmer],kmerToFirst[kmer],kmer) for kmer in kmerToCount] if (kmers == []): return (None,None,start,end) kmers.sort() if ("element" in debug): for (count,first,kmer) in kmers: print >>stderr, " %s: %d" % (kmer,-count) (count,first,kmer) = kmers[0] if (contains_repeat(kmer)): return (None,None,start,end) # determine the hamming distance between the run and a simple repeat, for # each "plausible" start and end; we compute the distance for each such # interval, and choose the one with the lowest hamming distance; ties are # broken in a deterministic-but-unspecified manner bestD = bestStart = bestEnd = None ################################################################################### # modified by Chen Sun(cxs1031@cse.psu.edu) on 10/18/2013 # since we do not allow hamming_distance > 0, which means we do not allow mutation, # we do not need this section to produce bestStart and End ################################################################################### #for (s,e) in plausible_intervals(start,end,period,len(seq),allowPartials=allowPartials): # d = hamming_distance(seq,s,e,kmer) # if (d == None): continue # if (bestD == None) or (d <= bestD): # (bestD,bestStart,bestEnd) = (d,s,e) bestStart = start if(allowPartials): bestEnd = end elif(not allowPartials): bestEnd = start pattern = seq[start:start+period] if ("partial" in debug): print "kmer:", kmer if(pattern != kmer): print "pattern:", pattern while(bestEnd <= end-period): bestEnd += period # bestD will always be 0, as we do not allow mutation bestD = 0 if ("partial" in debug): print bestD, bestStart, bestEnd ################################################################################### # modified by Chen Sun(cxs1031@cse.psu.edu) on 10/10 # ################################################################################### return (kmer,bestD,bestStart,bestEnd) def find_hamming_repeat_element(period,seq,start,end,allowPartials=False): # count the number of occurences of each k-mer; note that we can't # reject kmers containing smaller repeats yet, since for a sequence like # ACACACACACAAACACACACACACACACAC we must first discover ACACAC as the best # 6-mer, and THEN reject it; if we reject ACACAC while counting, we'd end # up reporting something like ACACAA as the best motif if ("element" in debug): print >>stderr, "find_repeat_element(%d,%d,%d)" % (period,start,end) kmerToCount = {} kmerToFirst = {} for ix in xrange(start,end-(period-1)): kmer = seq[ix:ix+period] if ("N" in kmer): continue if (kmer not in kmerToCount): kmerToCount[kmer] = 1 kmerToFirst[kmer] = ix else: kmerToCount[kmer] += 1 #if ("element" in debug): # print >>stderr, " %d: %s" % (ix,kmer) # choose the best k-mer; this is simply the most frequently occurring one, # with ties broken by whichever one came first kmers = [(-kmerToCount[kmer],kmerToFirst[kmer],kmer) for kmer in kmerToCount] if (kmers == []): return (None,None,start,end) kmers.sort() if ("element" in debug): for (count,first,kmer) in kmers: print >>stderr, " %s: %d" % (kmer,-count) (count,first,kmer) = kmers[0] if (contains_repeat(kmer)): return (None,None,start,end) # determine the hamming distance between the run and a simple repeat, for # each "plausible" start and end; we compute the distance for each such # interval, and choose the one with the lowest hamming distance; ties are # broken in a deterministic-but-unspecified manner bestD = bestStart = bestEnd = None for (s,e) in plausible_intervals(start,end,period,len(seq),allowPartials=allowPartials): d = hamming_distance(seq,s,e,kmer) if (d == None): continue if (bestD == None) or (d <= bestD): (bestD,bestStart,bestEnd) = (d,s,e) return (kmer,bestD,bestStart,bestEnd) # plausible_intervals-- # Yield all plausible intervals intersecting with a run. We generate all # starts within P bp of the run's start. For each of these, we either (a) try # all ends within P bp of run's end, or (b) trim the new interval to a whole # multiple of the period, and report this short interval and the longer # interval with one more period appended. Case (a) allows partial motifs, # while case (b) only allows whole motifs. def plausible_intervals(start,end,period,seqLen,allowPartials=False): # generate intervals that allow a partial copy of the motif if (allowPartials): for candStart in xrange(start-(period-1),start+period): if (candStart < 0): continue for candEnd in xrange(end-(period-1),end+period): if (candEnd > seqLen): continue if (candEnd <= candStart+period): continue yield (candStart,candEnd) # -OR- generate intervals that allow only whole copies of the motif else: for candStart in xrange(start-(period-1),start+period): if (candStart < 0): continue candEnd = candStart + ((end-candStart)/period)*period yield (candStart,candEnd) candEnd += period if (candEnd <= seqLen): yield (candStart,candEnd) # hamming_distance-- # Determine the hamming distance between the run and a simple repeat. # $$$ improve this by allowing gaps, and stopping when we reach a threshold kmerToDiffs = {} # (this is used for memo-ization) def hamming_distance(seq,start,end,kmer): period = len(kmer) if (end < start + period): return None wholeEnd = start + ((end-start)/period)*period if (kmer not in kmerToDiffs): kmerToDiffs[kmer] = { kmer:0 } d = 0 for ix in xrange(start,wholeEnd,period): qmer = seq[ix:ix+period] # same size as the kmer motif if (qmer in kmerToDiffs[kmer]): d += kmerToDiffs[kmer][qmer] continue diffs = 0 for iy in xrange(0,period): if (qmer[iy] != kmer[iy]): diffs += 1 kmerToDiffs[kmer][qmer] = diffs d += diffs if (end > wholeEnd): qmer = seq[wholeEnd:end] # shorter than the kmer motif if (qmer in kmerToDiffs[kmer]): d += kmerToDiffs[kmer][qmer] else: diffs = 0 for iy in xrange(0,len(qmer)): if (qmer[iy] != kmer[iy]): diffs += 1 kmerToDiffs[kmer][qmer] = diffs d += diffs return d # fasta_sequences-- # Read the fasta sequences from a file. Note that we convert to upper case, # and convert any letter other than ACGT to N. nonDnaMap = maketrans("BDEFHIJKLMOPQRSUVWXYZ","NNNNNNNNNNNNNNNNNNNNN") def fasta_sequences(f): seqName = None seqNucs = None for line in f: line = line.strip() if (line.startswith(">")): if (seqName != None): yield (seqName,"".join(seqNucs)) seqName = sequence_name(line) seqNucs = [] elif (seqName == None): assert (False), "first sequence has no header" else: seqNucs += [line] if (seqName != None): yield (seqName,"".join(seqNucs).upper().translate(nonDnaMap)) # fastq_sequences-- # Read the fastq sequences from a file. Note that we convert to upper case, # and convert any letter other than ACGT to N. def fastq_sequences(f): lineNum = 0 for line in f: lineNum += 1 line = line.strip() if (lineNum % 4 == 1): assert (line.startswith("@")), \ "bad read name at line %d" % lineNum seqName = line[1:] continue if (lineNum % 4 == 2): seqNucs = line continue if (lineNum % 4 == 3): assert (line.startswith("+")), \ "can't understand line %d:\n%s" % (lineNum,line) continue quals = line assert (len(quals) == len(seqNucs)), \ "length mismatch read vs. qualities at line %d" % lineNum yield (seqName,"".join(seqNucs).upper().translate(nonDnaMap),quals) assert (lineNum % 4 == 0), \ "incomplete read at end of file" def sam_sequences(f): lineNum = 0 for line in f: lineNum += 1 line = line.strip() if line.startswith("@"): continue columns = line.split("\t") seqName = columns[0] refName = columns[2] pre_s = int(columns[3]) - 1 cigar = columns[5] seqNucs = columns[9] yield (seqName,"".join(seqNucs).upper().translate(nonDnaMap), refName, pre_s, cigar) # sequence_name-- # Extract the sequence name from a fasta header. # $$$ this may need to be improved $$$ def sequence_name(s): s = s[1:].strip() if (s == ""): return "" else: return s.split()[0] # nucleotide_runs-- # Yield (start,end) for all runs of valid nucleotides in a sequence. def nucleotide_runs(s): runs = [] start = None for (ix,nuc) in enumerate(s): if (nuc in "ACGT"): if (start == None): start = ix else: if (start != None): yield (start,ix) start = None if (start != None): yield (start,len(s)) # contains_repeat-- # Determine whether a short sequence contains a repeated element, such as a # 6-mer containing a repeated 2-mer (ACACAC) or 3-mer (ACTACT). The repeat # must cover the entire sequence, without mismatches. def contains_repeat(kmer): kmerLength = len(kmer) hasRepeat = False rptLen = 1 while (not hasRepeat) and (2 * rptLen <= kmerLength): if (kmerLength % rptLen != 0): rptLen += 1 continue isRepeat = True for i in xrange(rptLen,kmerLength,rptLen): if (kmer[i:i+rptLen] != kmer[:rptLen]): isRepeat = False break if (isRepeat): hasRepeat = True break rptLen += 1 return hasRepeat # hash108-- # Return a 108-bit hash "value" of a string def hash108(s): m = md5_new() m.update(s) return m.hexdigest()[:27] # float_or_fraction-- # Convert a string to a number, allowing fractions def float_or_fraction(s): if ("/" in s): (numer,denom) = s.split("/",1) return float(numer)/float(denom) else: return float(s) # int_with_unit-- # Parse a string as an integer, allowing unit suffixes def int_with_unit(s): if (s.endswith("K")): multiplier = 1000 s = s[:-1] elif (s.endswith("M")): multiplier = 1000 * 1000 s = s[:-1] elif (s.endswith("G")): multiplier = 1000 * 1000 * 1000 s = s[:-1] else: multiplier = 1 try: return int(s) * multiplier except ValueError: return int(math.ceil(float(s) * multiplier)) if __name__ == "__main__": main()