Mercurial > repos > artbio > blastparser_and_hits
view BlastParser_and_hits.py @ 0:9dfb65ebb02e draft
planemo upload for repository https://github.com/ARTbio/tools-artbio/tree/master/tools/blastparser_and_hits commit 48132e5edac97d54804ccbaf620068a5fb800bdc
author | artbio |
---|---|
date | Sun, 15 Oct 2017 18:43:37 -0400 |
parents | |
children | 36103afa0934 |
line wrap: on
line source
#!/usr/bin/python import argparse from collections import defaultdict def Parser(): the_parser = argparse.ArgumentParser() the_parser.add_argument('--blast', action="store", type=str, help="Path to the blast output\ (tabular format, 12 column)") the_parser.add_argument('--sequences', action="store", type=str, help="Path to the fasta file with blasted\ sequences") the_parser.add_argument('--fastaOutput', action="store", type=str, help="fasta output file of blast hits") the_parser.add_argument('--tabularOutput', action="store", type=str, help="tabular output file of blast analysis") the_parser.add_argument('--flanking', action="store", type=int, help="number of flanking nucleotides\ added to the hit sequences") the_parser.add_argument('--mode', action="store", choices=["verbose", "short"], type=str, help="reporting (verbose) or not reporting (short)\ oases contigs") the_parser.add_argument('--filter_relativeCov', action="store", type=float, default=0, help="filter out relative coverages\ below the specified ratio (float number)") the_parser.add_argument('--filter_maxScore', action="store", type=float, default=0, help="filter out best BitScores below\ the specified float number") the_parser.add_argument('--filter_meanScore', action="store", type=float, default=0, help="filter out mean BitScores below the\ specified float number") the_parser.add_argument('--filter_term_in', action="store", type=str, default="", help="select the specified term in the\ subject list") the_parser.add_argument('--filter_term_out', action="store", type=str, default="", help="exclude the specified term from\ the subject list") the_parser.add_argument('--al_sequences', action="store", type=str, help="sequences that have been blast aligned") the_parser.add_argument('--un_sequences', action="store", type=str, help="sequences that have not been blast aligned") the_parser.add_argument('--dataset_name', action="store", type=str, default="", help="the name of the dataset that has been parsed,\ to be reported in the output") args = the_parser.parse_args() if not all((args.sequences, args.blast, args.fastaOutput, args.tabularOutput)): the_parser.error('argument(s) missing, call the\ -h option of the script') if not args.flanking: args.flanking = 0 return args def median(lst): lst = sorted(lst) if len(lst) < 1: return None if len(lst) % 2 == 1: return lst[((len(lst)+1)/2)-1] if len(lst) % 2 == 0: return float(sum(lst[(len(lst)/2)-1:(len(lst)/2)+1]))/2.0 def mean(lst): if len(lst) < 1: return 0 return sum(lst) / float(len(lst)) def getfasta(fastafile): fastadic = {} for line in open(fastafile): if line[0] == ">": header = line[1:-1] fastadic[header] = "" else: fastadic[header] += line for header in fastadic: fastadic[header] = "".join(fastadic[header].split("\n")) return fastadic def insert_newlines(string, every=60): lines = [] for i in range(0, len(string), every): lines.append(string[i:i+every]) return '\n'.join(lines) def getblast(blastfile): '''blastinfo [0] Percentage of identical matches blastinfo [1] Alignment length blastinfo [2] Number of mismatches blastinfo [3] Number of gap openings blastinfo [4] Start of alignment in query blastinfo [5] End of alignment in query blastinfo [6] Start of alignment in subject (database hit) blastinfo [7] End of alignment in subject (database hit) blastinfo [8] Expectation value (E-value) blastinfo [9] Bit score blastinfo [10] Subject length (NEED TO BE SPECIFIED WHEN RUNNING BLAST) ''' blastdic = defaultdict(dict) for line in open(blastfile): fields = line[:-1].split("\t") transcript = fields[0] subject = fields[1] # blastinfo[0] blastinfo = [float(fields[2])] # blastinfo[1:8] insets 1 to 7 blastinfo = blastinfo + [int(i) for i in fields[3:10]] # blastinfo[8] E-value remains as a string type blastinfo.append(fields[10]) # blastinfo[9] Bit score blastinfo.append(float(fields[11])) # blastinfo[10] Subject length MUST BE RETRIEVED # THROUGH A 13 COLUMN BLAST OUTPUT blastinfo.append(int(fields[12])) try: blastdic[subject][transcript].append(blastinfo) except Exception: blastdic[subject][transcript] = [blastinfo] return blastdic def getseq(fastadict, transcript, up, down, orientation="direct"): def reverse(seq): revdict = {"A": "T", "T": "A", "G": "C", "C": "G", "N": "N"} revseq = [revdict[i] for i in seq[::-1]] return "".join(revseq) pickseq = fastadict[transcript][up-1:down] if orientation == "direct": return pickseq else: return reverse(pickseq) def subjectCoverage(fastadict, blastdict, subject, QueriesFlankingNucleotides=0): SubjectCoverageList = [] HitDic = {} bitScores = [] for transcript in blastdict[subject]: prefix = "%s--%s_" % (subject, transcript) hitNumber = 0 for hit in blastdict[subject][transcript]: hitNumber += 1 suffix = "hit%s_IdMatch=%s,AligLength=%s,E-val=%s" % (hitNumber, hit[0], hit[1], hit[8]) # query coverage by a hit is in hit[4:6] HitDic[prefix+suffix] = GetHitSequence(fastadict, transcript, hit[4], hit[5], QueriesFlankingNucleotides) # subject coverage by a hit is in hit[6:8] SubjectCoverageList += range(min([hit[6], hit[7]]), max([hit[6], hit[7]]) + 1) bitScores.append(hit[9]) # always the same value for a given subject. Stupid but simple subjectLength = hit[10] TotalSubjectCoverage = len(set(SubjectCoverageList)) RelativeSubjectCoverage = TotalSubjectCoverage/float(subjectLength) return (HitDic, subjectLength, TotalSubjectCoverage, RelativeSubjectCoverage, max(bitScores), mean(bitScores)) def GetHitSequence(fastadict, FastaHeader, leftCoordinate, rightCoordinate, FlankingValue): if rightCoordinate > leftCoordinate: polarity = "direct" else: polarity = "reverse" leftCoordinate, rightCoordinate = rightCoordinate, leftCoordinate if leftCoordinate - FlankingValue > 0: leftCoordinate -= FlankingValue else: leftCoordinate = 1 return getseq(fastadict, FastaHeader, leftCoordinate, rightCoordinate, polarity) def outputParsing(dataset_name, F, Fasta, results, Xblastdict, fastadict, filter_relativeCov=0, filter_maxScore=0, filter_meanScore=0, filter_term_in="", filter_term_out="", mode="verbose"): def filter_results(results, filter_relativeCov=0, filter_maxScore=0, filter_meanScore=0, filter_term_in="", filter_term_out=""): for subject in results.keys(): if results[subject][ "RelativeSubjectCoverage"] < filter_relativeCov: del results[subject] continue if results[subject]["maxBitScores"] < filter_maxScore: del results[subject] continue if results[subject]["meanBitScores"] < filter_meanScore: del results[subject] continue if filter_term_in in subject: pass else: del results[subject] continue if filter_term_out and filter_term_out in subject: del results[subject] continue return results F = open(F, "w") Fasta = open(Fasta, "w") blasted_transcripts = [] filter_results(results, filter_relativeCov, filter_maxScore, filter_meanScore, filter_term_in, filter_term_out) for subject in results: for transcript in Xblastdict[subject]: blasted_transcripts.append(transcript) blasted_transcripts = list(set(blasted_transcripts)) if mode == "verbose": F.write("--- %s ---\n" % dataset_name) F.write("# %s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n" % ("SeqId", "%Identity", "AlignLength", "StartSubject", "EndSubject", "%QueryHitCov", "E-value", "BitScore")) for subject in sorted(results, key=lambda x: results[x]["meanBitScores"], reverse=True): F.write(" \n# %s\n" % subject) F.write("# Suject Length: %s\n" % results[subject]["subjectLength"]) F.write("# Total Subject Coverage: %s\n" % results[subject]["TotalCoverage"]) F.write("# Relative Subject Coverage: %s\n" % results[subject]["RelativeSubjectCoverage"]) F.write("# Best Bit Score: %s\n" % results[subject][ "maxBitScores"]) F.write("# Mean Bit Score: %s\n" % results[subject][ "meanBitScores"]) for header in results[subject]["HitDic"]: Fasta.write(">%s\n%s\n" % (header, insert_newlines(results[subject][ "HitDic"][ header]))) Fasta.write("\n") # final carriage return for the sequence for transcript in Xblastdict[subject]: transcriptSize = float(len(fastadict[transcript])) for hit in Xblastdict[subject][transcript]: percentIdentity = hit[0] alignLenght = hit[1] subjectStart = hit[6] subjectEnd = hit[7] queryCov = "%.1f" % (abs(hit[5]-hit[4])/transcriptSize*100) Eval, BitScore = hit[8], hit[9] info = [transcript] + [percentIdentity, alignLenght, subjectStart, subjectEnd, queryCov, Eval, BitScore] info = [str(i) for i in info] info = "\t".join(info) F.write("%s\n" % info) else: F.write("--- %s ---\n" % dataset_name) F.write("# subject\tsubject length\tTotal Subject Coverage\tRelative\ Subject Coverage\tBest Bit Score\tMean Bit Score\n") for subject in sorted(results, key=lambda x: results[x]["meanBitScores"], reverse=True): line = [] line.append(subject) line.append(results[subject]["subjectLength"]) line.append(results[subject]["TotalCoverage"]) line.append(results[subject]["RelativeSubjectCoverage"]) line.append(results[subject]["maxBitScores"]) line.append(results[subject]["meanBitScores"]) line = [str(i) for i in line] F.write("%s\n" % "\t".join(line)) for header in results[subject]["HitDic"]: Fasta.write(">%s\n%s\n" % (header, insert_newlines( results[subject][ "HitDic"][header]))) Fasta.write("\n") # final carriage return for the sequence F.close() Fasta.close() return blasted_transcripts def dispatch_sequences(fastadict, blasted_transcripts, matched_sequences, unmatched_sequences): '''to output the sequences that matched and did not matched in the blast''' F_matched = open(matched_sequences, "w") F_unmatched = open(unmatched_sequences, "w") for transcript in fastadict: if transcript in blasted_transcripts: ''''list of blasted_transcripts is generated by the outputParsing function''' F_matched.write(">%s\n%s\n" % (transcript, insert_newlines( fastadict[transcript]))) else: F_unmatched.write(">%s\n%s\n" % (transcript, insert_newlines( fastadict[transcript]))) F_matched.close() F_unmatched.close() return def __main__(): args = Parser() fastadict = getfasta(args.sequences) Xblastdict = getblast(args.blast) results = defaultdict(dict) for subject in Xblastdict: results[subject]["HitDic"], results[subject]["subjectLength"], results[ subject]["TotalCoverage"], results[subject][ "RelativeSubjectCoverage"], results[subject][ "maxBitScores"], results[subject][ "meanBitScores"] = subjectCoverage(fastadict, Xblastdict, subject, args.flanking) blasted_transcripts = outputParsing( args.dataset_name, args.tabularOutput, args.fastaOutput, results, Xblastdict, fastadict, filter_relativeCov=args.filter_relativeCov, filter_maxScore=args.filter_maxScore, filter_meanScore=args.filter_meanScore, filter_term_in=args.filter_term_in, filter_term_out=args.filter_term_out, mode=args.mode) dispatch_sequences(fastadict, blasted_transcripts, args.al_sequences, args.un_sequences) if __name__ == "__main__": __main__()