Mercurial > repos > artbio > cpm_tpm_rpk
view cpm_tpm_rpk.R @ 2:563337e780ce draft
planemo upload for repository https://github.com/ARTbio/tools-artbio/tree/master/tools/cpm_tpm_rpk commit 4ade64ddb1b4e2c62cd153bee13c7ce4ff2d249d
author | artbio |
---|---|
date | Wed, 06 Feb 2019 19:31:57 -0500 |
parents | b74bab5157c4 |
children | 8b1020c25f0f |
line wrap: on
line source
if (length(commandArgs(TRUE)) == 0) { system("Rscript cpm_tpm_rpk.R -h", intern = F) q("no") } # load packages that are provided in the conda env options( show.error.messages=F, error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) loc <- Sys.setlocale("LC_MESSAGES", "en_US.UTF-8") warnings() library(optparse) library(ggplot2) library(reshape2) library(Rtsne) library(ggfortify) #Arguments option_list = list( make_option( c("-d", "--data"), default = NA, type = 'character', help = "Input file that contains count values to transform" ), make_option( c("-t", "--type"), default = 'cpm', type = 'character', help = "Transformation type, either cpm, tpm or rpk [default : '%default' ]" ), make_option( c("-s", "--sep"), default = '\t', type = 'character', help = "File separator [default : '%default' ]" ), make_option( c("-c", "--colnames"), default = TRUE, type = 'logical', help = "Consider first line as header ? [default : '%default' ]" ), make_option( c("-f", "--gene"), default = NA, type = 'character', help = "Two column of gene length file" ), make_option( c("-a", "--gene_sep"), default = '\t', type = 'character', help = "Gene length file separator [default : '%default' ]" ), make_option( c("-b", "--gene_header"), default = TRUE, type = 'logical', help = "Consider first line of gene length as header ? [default : '%default' ]" ), make_option( c("-l", "--log"), default = FALSE, type = 'logical', help = "Should be log transformed as well ? (log2(data +1)) [default : '%default' ]" ), make_option( c("-o", "--out"), default = "res.tab", type = 'character', help = "Output name [default : '%default' ]" ), make_option( "--visu", default = FALSE, type = 'logical', help = "performs T-SNE [default : '%default' ]" ), make_option( "--tsne_labels", default = FALSE, type = 'logical', help = "add labels to t-SNE plot [default : '%default' ]" ), make_option( "--seed", default = 42, type = 'integer', help = "Seed value for reproducibility [default : '%default' ]" ), make_option( "--perp", default = 5.0, type = 'numeric', help = "perplexity [default : '%default' ]" ), make_option( "--theta", default = 1.0, type = 'numeric', help = "theta [default : '%default' ]" ), make_option( c("-D", "--tsne_out"), default = "tsne.pdf", type = 'character', help = "T-SNE pdf [default : '%default' ]" ), make_option( "--pca_out", default = "pca.pdf", type = 'character', help = "PCA pdf [default : '%default' ]" ) ) opt = parse_args(OptionParser(option_list = option_list), args = commandArgs(trailingOnly = TRUE)) if (opt$data == "" & !(opt$help)) { stop("At least one argument must be supplied (count data).\n", call. = FALSE) } else if ((opt$type == "tpm" | opt$type == "rpk") & opt$gene == "") { stop("At least two arguments must be supplied (count data and gene length file).\n", call. = FALSE) } else if (opt$type != "tpm" & opt$type != "rpk" & opt$type != "cpm") { stop("Wrong transformation requested (--type option) must be : cpm, tpm or rpk.\n", call. = FALSE) } if (opt$sep == "tab") {opt$sep = "\t"} if (opt$gene_sep == "tab") {opt$gene_sep = "\t"} cpm <- function(count) { t(t(count) / colSums(count)) * 1000000 } rpk <- function(count, length) { count / (length / 1000) } tpm <- function(count, length) { RPK = rpk(count, length) perMillion_factor = colSums(RPK) / 1000000 TPM = RPK / perMillion_factor return(TPM) } data = read.table( opt$data, header = opt$colnames, row.names = 1, sep = opt$sep ) if (opt$type == "tpm" | opt$type == "rpk") { gene_length = as.data.frame( read.table( opt$gene, h = opt$gene_header, row.names = 1, sep = opt$gene_sep ) ) gene_length = as.data.frame(gene_length[match(rownames(data), rownames(gene_length)), ], rownames(data)) } if (opt$type == "cpm") res = cpm(data) if (opt$type == "tpm") res = as.data.frame(apply(data, 2, tpm, length = gene_length), row.names = rownames(data)) if (opt$type == "rpk") res = as.data.frame(apply(data, 2, rpk, length = gene_length), row.names = rownames(data)) colnames(res) = colnames(data) if (opt$log == TRUE) { res = log2(res + 1) } write.table( cbind(Features = rownames(res), res), opt$out, col.names = opt$colnames, row.names = F, quote = F, sep = "\t" ) ## if (opt$visu == TRUE) { df = res # filter and transpose df for tsne and pca df = df[rowSums(df) != 0,] # remove lines without information (with only 0 counts) tdf = t(df) # make tsne and plot results set.seed(opt$seed) ## Sets seed for reproducibility tsne_out <- Rtsne(tdf, perplexity=opt$perp, theta=opt$theta) # embedding <- as.data.frame(tsne_out$Y) embedding$Class <- as.factor(sub("Class_", "", rownames(tdf))) gg_legend = theme(legend.position="none") ggplot(embedding, aes(x=V1, y=V2)) + geom_point(size=1.25, color='red') + gg_legend + xlab("") + ylab("") + ggtitle('t-SNE') + if (opt$tsne_labels == TRUE) { geom_text(aes(label=Class),hjust=-0.2, vjust=-0.5, size=2.5, color='darkblue') } ggsave(file=opt$tsne_out, device="pdf") # make PCA and plot result with ggfortify tdf.pca <- prcomp(tdf, center = TRUE, scale. = T) if (opt$tsne_labels == TRUE) { autoplot(tdf.pca, shape=F, label=T, label.size=2.5, colour="darkred") + xlab(paste("PC1",summary(tdf.pca)$importance[2,1]*100, "%")) + ylab(paste("PC2",summary(tdf.pca)$importance[2,2]*100, "%")) + ggtitle('PCA') ggsave(file=opt$pca_out, device="pdf") } else { autoplot(tdf.pca, shape=T, colour="red") + xlab(paste("PC1",summary(tdf.pca)$importance[2,1]*100, "%")) + ylab(paste("PC2",summary(tdf.pca)$importance[2,2]*100, "%")) + ggtitle('PCA') ggsave(file=opt$pca_out, device="pdf") } }