# HG changeset patch
# User artbio
# Date 1684686383 0
# Node ID 18a1dc4aec4a5272dd75675e6a10feb544fee1e9
# Parent 19bef589f876d88c1204e6c41d0fec6bbdd42f07
planemo upload for repository https://github.com/ARTbio/tools-artbio/tree/master/tools/gsc_high_dimension_visualization commit ef87a68f9a33f8418699d97627eb5f49a5e2c4a6
diff -r 19bef589f876 -r 18a1dc4aec4a high_dim_visu.R
--- a/high_dim_visu.R Wed Jun 24 06:22:53 2020 -0400
+++ b/high_dim_visu.R Sun May 21 16:26:23 2023 +0000
@@ -1,6 +1,9 @@
-# load packages that are provided in the conda env
-options( show.error.messages=F,
- error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } )
+options(show.error.messages = FALSE,
+ error = function() {
+ cat(geterrmessage(), file = stderr())
+ q("no", 1, FALSE)
+ }
+)
loc <- Sys.setlocale("LC_MESSAGES", "en_US.UTF-8")
warnings()
library(optparse)
@@ -12,211 +15,212 @@
library(RColorBrewer)
library(ClusterR)
library(data.table)
+library(Polychrome)
# Arguments
-option_list = list(
+option_list <- list(
make_option(
"--data",
default = NA,
- type = 'character',
+ type = "character",
help = "Input file that contains expression value to visualise"
),
make_option(
"--sep",
- default = '\t',
- type = 'character',
+ default = "\t",
+ type = "character",
help = "File separator [default : '%default' ]"
),
make_option(
"--colnames",
default = TRUE,
- type = 'logical',
+ type = "logical",
help = "Consider first line as header ? [default : '%default' ]"
),
make_option(
"--out",
default = "res.tab",
- type = 'character',
+ type = "character",
help = "Output name [default : '%default' ]"
),
make_option(
"--labels",
default = FALSE,
- type = 'logical',
+ type = "logical",
help = "add labels in scatter plots [default : '%default' ]"
),
make_option(
"--factor",
- default = '',
- type = 'character',
+ default = "",
+ type = "character",
help = "A two column table that specifies factor levels for contrasting data [default : '%default' ]"
),
make_option(
"--visu_choice",
- default = 'PCA',
- type = 'character',
+ default = "PCA",
+ type = "character",
help = "visualisation method ('PCA', 'tSNE', 'HCPC') [default : '%default' ]"
),
make_option(
"--table_coordinates",
- default = '',
- type = 'character',
+ default = "",
+ type = "character",
help = "Table with plot coordinates [default : '%default' ]"
),
make_option(
"--Rtsne_seed",
default = 42,
- type = 'integer',
+ type = "integer",
help = "Seed value for reproducibility [default : '%default' ]"
),
make_option(
"--Rtsne_dims",
default = 2,
- type = 'integer',
+ type = "integer",
help = "Output dimensionality [default : '%default' ]"
),
make_option(
"--Rtsne_initial_dims",
default = 50,
- type = 'integer',
+ type = "integer",
help = "The number of dimensions that should be retained in the initial PCA step [default : '%default' ]"
),
make_option(
"--Rtsne_perplexity",
default = 5.0,
- type = 'numeric',
+ type = "numeric",
help = "perplexity [default : '%default' ]"
),
make_option(
"--Rtsne_theta",
default = 1.0,
- type = 'numeric',
+ type = "numeric",
help = "theta [default : '%default' ]"
),
make_option(
"--Rtsne_max_iter",
default = 1000,
- type = 'integer',
+ type = "integer",
help = "max_iter [default : '%default' ]"
),
make_option(
"--Rtsne_pca",
default = TRUE,
- type = 'logical',
+ type = "logical",
help = "Whether an initial PCA step should be performed [default : '%default' ]"
),
make_option(
"--Rtsne_pca_center",
default = TRUE,
- type = 'logical',
+ type = "logical",
help = "Should data be centered before pca is applied? [default : '%default' ]"
),
make_option(
"--Rtsne_pca_scale",
default = FALSE,
- type = 'logical',
+ type = "logical",
help = "Should data be scaled before pca is applied? [default : '%default' ]"
),
make_option(
"--Rtsne_normalize",
default = TRUE,
- type = 'logical',
+ type = "logical",
help = "Should data be normalized internally prior to distance calculations? [default : '%default' ]"
),
make_option(
"--Rtsne_exaggeration_factor",
default = 12.0,
- type = 'numeric',
+ type = "numeric",
help = " Exaggeration factor used to multiply the P matrix in the first part of the optimization [default : '%default' ]"
),
make_option(
"--PCA_npc",
default = 5,
- type = 'integer',
+ type = "integer",
help = "number of dimensions kept in the results [default : '%default' ]"
),
make_option(
"--PCA_x_axis",
default = 1,
- type = 'integer',
+ type = "integer",
help = "PC to plot in the x axis [default : '%default' ]"
),
make_option(
"--PCA_y_axis",
default = 2,
- type = 'integer',
+ type = "integer",
help = "PC to plot in the y axis [default : '%default' ]"
),
make_option(
"--HCPC_ncluster",
default = -1,
- type = 'numeric',
+ type = "numeric",
help = "nb.clust, number of clusters to consider in the hierarchical clustering. [default : -1 let HCPC to optimize the number]"
),
make_option(
"--HCPC_npc",
default = 5,
- type = 'integer',
+ type = "integer",
help = "npc, number of dimensions which are kept for HCPC analysis [default : '%default' ]"
),
make_option(
"--HCPC_metric",
- default = 'euclidean',
- type = 'character',
+ default = "euclidean",
+ type = "character",
help = "Metric to be used for calculating dissimilarities between observations, available 'euclidean' or 'manhattan' [default : '%default' ]"
),
make_option(
"--HCPC_method",
- default = 'ward',
- type = 'character',
+ default = "ward",
+ type = "character",
help = "Clustering method between 'ward','average','single', 'complete', 'weighted' [default :'%default']"
),
make_option(
"--pdf_out",
default = "out.pdf",
- type = 'character',
+ type = "character",
help = "pdf of plots [default : '%default' ]"
),
make_option(
"--HCPC_consol",
- default = 'TRUE',
- type = 'logical',
+ default = "TRUE",
+ type = "logical",
help = "If TRUE, a k-means consolidation is performed [default :'%default']"
),
make_option(
"--HCPC_itermax",
- default = '10',
- type = 'integer',
+ default = "10",
+ type = "integer",
help = "The maximum number of iterations for the consolidation [default :'%default']"
),
make_option(
"--HCPC_min",
- default = '3',
- type = 'integer',
+ default = "3",
+ type = "integer",
help = "The least possible number of clusters suggested [default :'%default']"
),
make_option(
"--HCPC_max",
default = -1,
- type = 'integer',
+ type = "integer",
help = "The higher possible number of clusters suggested [default :'%default']"
),
make_option(
"--HCPC_clusterCA",
- default = 'rows',
- type = 'character',
+ default = "rows",
+ type = "character",
help = "A string equals to 'rows' or 'columns' for the clustering of Correspondence Analysis results [default :'%default']"
),
make_option(
"--HCPC_kk",
default = Inf,
- type = 'numeric',
+ type = "numeric",
help = "The maximum number of iterations for the consolidation [default :'%default']"
),
make_option(
"--HCPC_clust",
default = "",
- type = 'character',
+ type = "character",
help = "Output result of HCPC clustering : two column table (cell identifiers and clusters) [default :'%default']"
),
make_option(
@@ -233,16 +237,24 @@
)
)
-opt = parse_args(OptionParser(option_list = option_list),
- args = commandArgs(trailingOnly = TRUE))
+opt <- parse_args(OptionParser(option_list = option_list),
+ args = commandArgs(trailingOnly = TRUE))
-if (opt$sep == "tab") {opt$sep <- "\t"}
-if (opt$sep == "comma") {opt$sep <- ","}
-if(opt$HCPC_max == -1) {opt$HCPC_max <- NULL}
-if(opt$HCPC_kk == -1) {opt$HCPC_kk <- Inf}
+if (opt$sep == "tab") {
+ opt$sep <- "\t"
+}
+if (opt$sep == "comma") {
+ opt$sep <- ","
+}
+if (opt$HCPC_max == -1) {
+ opt$HCPC_max <- NULL
+}
+if (opt$HCPC_kk == -1) {
+ opt$HCPC_kk <- Inf
+}
##Add legend to plot()
-legend.col <- function(col, lev){
+legend_col <- function(col, lev) {
opar <- par
@@ -250,22 +262,20 @@
bx <- par("usr")
-box.cx <- c(bx[2] + (bx[2] - bx[1]) / 1000,
+box_cx <- c(bx[2] + (bx[2] - bx[1]) / 1000,
bx[2] + (bx[2] - bx[1]) / 1000 + (bx[2] - bx[1]) / 50)
-box.cy <- c(bx[3], bx[3])
-box.sy <- (bx[4] - bx[3]) / n
+box_cy <- c(bx[3], bx[3])
+box_sy <- (bx[4] - bx[3]) / n
-xx <- rep(box.cx, each = 2)
+xx <- rep(box_cx, each = 2)
par(xpd = TRUE)
-for(i in 1:n){
-
-yy <- c(box.cy[1] + (box.sy * (i - 1)),
-box.cy[1] + (box.sy * (i)),
-box.cy[1] + (box.sy * (i)),
-box.cy[1] + (box.sy * (i - 1)))
-polygon(xx, yy, col = col[i], border = col[i])
-
+for (i in 1:n) {
+ yy <- c(box_cy[1] + (box_sy * (i - 1)),
+ box_cy[1] + (box_sy * (i)),
+ box_cy[1] + (box_sy * (i)),
+ box_cy[1] + (box_sy * (i - 1)))
+ polygon(xx, yy, col = col[i], border = col[i])
}
par(new = TRUE)
plot(0, 0, type = "n",
@@ -277,8 +287,7 @@
par <- opar
}
-
-data = read.delim(
+data <- read.delim(
opt$data,
check.names = FALSE,
header = opt$colnames,
@@ -287,125 +296,127 @@
)
# Contrasting factor and its colors
-if (opt$factor != '') {
+if (opt$factor != "") {
contrasting_factor <- read.delim(
opt$factor,
header = TRUE
)
- rownames(contrasting_factor) <- contrasting_factor[,1]
- contrasting_factor <- contrasting_factor[colnames(data),]
- colnames(contrasting_factor) <- c("id","factor")
- if(is.numeric(contrasting_factor$factor)){
+ rownames(contrasting_factor) <- contrasting_factor[, 1]
+ contrasting_factor <- contrasting_factor[colnames(data), ]
+ colnames(contrasting_factor) <- c("id", "factor")
+ if (is.numeric(contrasting_factor$factor)) {
factor_cols <- rev(brewer.pal(n = 11, name = "RdYlGn"))[contrasting_factor$factor]
} else {
contrasting_factor$factor <- as.factor(contrasting_factor$factor)
- if(nlevels(contrasting_factor$factor) == 2){
+ if (nlevels(contrasting_factor$factor) == 2) {
colors_labels <- c("#E41A1C", "#377EB8")
} else {
- colors_labels <- brewer.pal(nlevels(contrasting_factor$factor), name = 'Paired')
+ set.seed(567629)
+ colors_labels <- createPalette(nlevels(contrasting_factor$factor), c("#5A5156", "#E4E1E3", "#F6222E"))
+ names(colors_labels) <- NULL
}
- factorColors <-
+ factor_colors <-
with(contrasting_factor,
data.frame(factor = levels(contrasting_factor$factor),
color = I(colors_labels)
)
)
- factor_cols <- factorColors$color[match(contrasting_factor$factor,
- factorColors$factor)]
+ factor_cols <- factor_colors$color[match(contrasting_factor$factor,
+ factor_colors$factor)]
}
} else {
factor_cols <- rep("deepskyblue4", length(rownames(data)))
}
################ t-SNE ####################
-if (opt$visu_choice == 'tSNE') {
+if (opt$visu_choice == "tSNE") {
# filter and transpose df for tsne and pca
- tdf = t(data)
+ tdf <- t(data)
# make tsne and plot results
set.seed(opt$Rtsne_seed) ## Sets seed for reproducibility
tsne_out <- Rtsne(tdf,
dims = opt$Rtsne_dims,
- initial_dims = opt$Rtsne_initial_dims,
- perplexity = opt$Rtsne_perplexity ,
+ initial_dims = opt$Rtsne_initial_dims,
+ perplexity = opt$Rtsne_perplexity,
theta = opt$Rtsne_theta,
max_iter = opt$Rtsne_max_iter,
- pca = opt$Rtsne_pca,
+ pca = opt$Rtsne_pca,
pca_center = opt$Rtsne_pca_center,
pca_scale = opt$Rtsne_pca_scale,
normalize = opt$Rtsne_normalize,
- exaggeration_factor=opt$Rtsne_exaggeration_factor)
+ exaggeration_factor = opt$Rtsne_exaggeration_factor)
- embedding <- as.data.frame(tsne_out$Y[,1:2])
+ embedding <- as.data.frame(tsne_out$Y[, 1:2])
embedding$Class <- as.factor(rownames(tdf))
- gg_legend = theme(legend.position="right")
- if (opt$factor == '') {
- ggplot(embedding, aes(x=V1, y=V2)) +
- geom_point(size=1, color='deepskyblue4') +
+ gg_legend <- theme(legend.position = "right")
+ if (opt$factor == "") {
+ ggplot(embedding, aes(x = V1, y = V2)) +
+ geom_point(size = 1, color = "deepskyblue4") +
gg_legend +
xlab("t-SNE 1") +
ylab("t-SNE 2") +
- ggtitle('t-SNE') +
+ ggtitle("t-SNE") +
if (opt$labels) {
- geom_text(aes(label=Class),hjust=-0.2, vjust=-0.5, size=1.5, color='deepskyblue4')
+ geom_text(aes(label = Class), hjust = -0.2, vjust = -0.5, size = 1.5, color = "deepskyblue4")
}
} else {
- if(is.numeric(contrasting_factor$factor)){
+ if (is.numeric(contrasting_factor$factor)) {
embedding$factor <- contrasting_factor$factor
} else {
embedding$factor <- as.factor(contrasting_factor$factor)
}
- ggplot(embedding, aes(x=V1, y=V2, color=factor)) +
- geom_point(size=1) + #, color=factor_cols
+ ggplot(embedding, aes(x = V1, y = V2, color = factor)) +
+ geom_point(size = 1) +
gg_legend +
xlab("t-SNE 1") +
ylab("t-SNE 2") +
- ggtitle('t-SNE') +
+ ggtitle("t-SNE") +
if (opt$labels) {
- geom_text(aes(label=Class, colour=factor),hjust=-0.2, vjust=-0.5, size=1.5)
+ geom_text(aes(label = Class, colour = factor), hjust = -0.2, vjust = -0.5, size = 1.5)
}
- }
- ggsave(file=opt$pdf_out, device="pdf")
-
+ }
+ ggsave(file = opt$pdf_out, device = "pdf")
+
#save coordinates table
- if(opt$table_coordinates != ''){
+ if (opt$table_coordinates != "") {
coord_table <- cbind(rownames(tdf), round(as.data.frame(tsne_out$Y), 6))
- colnames(coord_table)=c("Cells",paste0("DIM",(1:opt$Rtsne_dims)))
+ colnames(coord_table) <- c("Cells", paste0("DIM", (1:opt$Rtsne_dims)))
}
}
######### make PCA with FactoMineR #################
-if (opt$visu_choice == 'PCA') {
- pca <- PCA(t(data), ncp=opt$PCA_npc, graph=FALSE)
+if (opt$visu_choice == "PCA") {
+ pca <- PCA(t(data), ncp = opt$PCA_npc, graph = FALSE)
pdf(opt$pdf_out)
if (opt$labels == FALSE) {
- plot(pca, axes = c(opt$PCA_x_axis,opt$PCA_y_axis), label="none" , col.ind = factor_cols)
+ plot(pca, axes = c(opt$PCA_x_axis, opt$PCA_y_axis), label = "none", col.ind = factor_cols)
} else {
- plot(pca, axes = c(opt$PCA_x_axis,opt$PCA_y_axis), cex=0.2 , col.ind = factor_cols)
+ plot(pca, axes = c(opt$PCA_x_axis, opt$PCA_y_axis), cex = 0.2, col.ind = factor_cols)
}
-if (opt$factor != '') {
- if(is.factor(contrasting_factor$factor)) {
- legend(x = 'topright',
- legend = as.character(factorColors$factor),
- col = factorColors$color, pch = 16, bty = 'n', xjust = 1, cex=0.7)
+if (opt$factor != "") {
+ if (is.factor(contrasting_factor$factor)) {
+ legend(x = "topright",
+ legend = as.character(factor_colors$factor),
+ col = factor_colors$color, pch = 16, bty = "n", xjust = 1, cex = 0.7)
} else {
- legend.col(col = rev(brewer.pal(n = 11, name = "RdYlGn")), lev = cut(contrasting_factor$factor, 11, label = FALSE))
+ legend_col(col = rev(brewer.pal(n = 11, name = "RdYlGn")), lev = cut(contrasting_factor$factor, 11, label = FALSE))
}
}
dev.off()
#save coordinates table
- if(opt$table_coordinates != ''){
+ if (opt$table_coordinates != "") {
coord_table <- cbind(rownames(pca$ind$coord), round(as.data.frame(pca$ind$coord), 6))
- colnames(coord_table)=c("Cells",paste0("DIM",(1:opt$PCA_npc)))
+ colnames(coord_table) <- c("Cells", paste0("DIM", (1:opt$PCA_npc)))
}
}
########### make HCPC with FactoMineR ##########
-if (opt$visu_choice == 'HCPC') {
+if (opt$visu_choice == "HCPC") {
# HCPC starts with a PCA
pca <- PCA(
@@ -414,96 +425,76 @@
graph = FALSE,
)
-PCA_IndCoord = as.data.frame(pca$ind$coord) # coordinates of observations in PCA
+pca_ind_coord <- as.data.frame(pca$ind$coord) # coordinates of observations in PCA
# Hierarchical Clustering On Principal Components Followed By Kmean Clustering
-res.hcpc <- HCPC(pca,
- nb.clust=opt$HCPC_ncluster, metric=opt$HCPC_metric, method=opt$HCPC_method,
- graph=F,consol=opt$HCPC_consol,iter.max=opt$HCPC_itermax,min=opt$HCPC_min,max=opt$HCPC_max,
- cluster.CA=opt$HCPC_clusterCA,kk=opt$HCPC_kk)
+res_hcpc <- HCPC(pca,
+ nb.clust = opt$HCPC_ncluster, metric = opt$HCPC_metric, method = opt$HCPC_method,
+ graph = FALSE, consol = opt$HCPC_consol, iter.max = opt$HCPC_itermax, min = opt$HCPC_min, max = opt$HCPC_max,
+ cluster.CA = opt$HCPC_clusterCA, kk = opt$HCPC_kk)
# HCPC plots
-dims <- head(as.data.frame(res.hcpc$call$t$res$eig),2) # dims variances in column 2
+dims <- head(as.data.frame(res_hcpc$call$t$res$eig), 2) # dims variances in column 2
pdf(opt$pdf_out)
-plot(res.hcpc, choice="tree")
-plot(res.hcpc, choice="bar")
-plot(res.hcpc, choice="3D.map")
+plot(res_hcpc, choice = "tree")
+plot(res_hcpc, choice = "bar")
+plot(res_hcpc, choice = "3D.map")
if (opt$labels == FALSE) {
-plot(res.hcpc, choice="map", label="none")
+plot(res_hcpc, choice = "map", label = "none")
} else {
-plot(res.hcpc, choice="map")
+plot(res_hcpc, choice = "map")
}
# user contrasts on the pca
-if (opt$factor != '') {
- plot(pca, label="none", col.ind = factor_cols)
- if(is.factor(contrasting_factor$factor)) {
- legend(x = 'topright',
- legend = as.character(factorColors$factor),
- col = factorColors$color, pch = 16, bty = 'n', xjust = 1, cex=0.7)
-
+if (opt$factor != "") {
+ plot(pca, label = "none", col.ind = factor_cols)
+ if (is.factor(contrasting_factor$factor)) {
+ legend(x = "topright",
+ legend = as.character(factor_colors$factor),
+ col = factor_colors$color, pch = 16, bty = "n", xjust = 1, cex = 0.7)
+
## Normalized Mutual Information
sink(opt$HCPC_mutual_info)
res <- external_validation(
true_labels = as.numeric(contrasting_factor$factor),
- clusters = as.numeric(res.hcpc$data.clust$clust),
+ clusters = as.numeric(res_hcpc$data.clust$clust),
summary_stats = TRUE
)
sink()
} else {
- legend.col(col = rev(brewer.pal(n = 11, name = "RdYlGn")), lev = cut(contrasting_factor$factor, 11, label = FALSE))
+ legend_col(col = rev(brewer.pal(n = 11, name = "RdYlGn")), lev = cut(contrasting_factor$factor, 11, label = FALSE))
}
}
-## Clusters to which individual observations belong # used ?
-# Clust <- data.frame(Cluster = res.hcpc$data.clust[, (nrow(data) + 1)],
-# Observation = rownames(res.hcpc$data.clust))
-# metadata <- data.frame(Observation=colnames(data), row.names=colnames(data))
-# metadata = merge(y = metadata,
-# x = Clust,
-# by = "Observation")
-
-# unclear utility
-# ObsNumberPerCluster = as.data.frame(table(metadata$Cluster))
-# colnames(ObsNumberPerCluster) = c("Cluster", "ObsNumber")
-#
-# ## Silhouette Plot # not used
-# hc.cut = hcut(PCA_IndCoord,
-# k = nlevels(metadata$Cluster),
-# hc_method = "ward.D2")
-#
-# Sil = fviz_silhouette(hc.cut)
-# sil1 = as.data.frame(Sil$data)
-
dev.off()
- if(opt$table_coordinates != ''){
- coord_table <- cbind(Cell=rownames(res.hcpc$call$X),
- round(as.data.frame(res.hcpc$call$X[, -length(res.hcpc$call$X)]), 6),
- as.data.frame(res.hcpc$call$X[, length(res.hcpc$call$X)])
+if (opt$table_coordinates != "") {
+ coord_table <- cbind(Cell = rownames(res_hcpc$call$X),
+ round(as.data.frame(res_hcpc$call$X[, -length(res_hcpc$call$X)]), 6),
+ as.data.frame(res_hcpc$call$X[, length(res_hcpc$call$X)])
)
- colnames(coord_table)=c("Cells",paste0("DIM",(1:opt$HCPC_npc)),"Cluster")
+ colnames(coord_table) <- c("Cells", paste0("DIM", (1:opt$HCPC_npc)), "Cluster")
}
- if(opt$HCPC_clust != ""){
- res_clustering <- data.frame(Cell = rownames(res.hcpc$data.clust),
- Cluster = res.hcpc$data.clust$clust)
-
+if (opt$HCPC_clust != "") {
+res_clustering <- data.frame(Cell = rownames(res_hcpc$data.clust),
+ Cluster = res_hcpc$data.clust$clust)
+
}
# Description of cluster by most contributing variables / gene expressions
# first transform list of vectors in a list of dataframes
-extract_description <- lapply(res.hcpc$desc.var$quanti, as.data.frame)
+extract_description <- lapply(res_hcpc$desc.var$quanti, as.data.frame)
# second, transfer rownames (genes) to column in the dataframe, before rbinding
extract_description_w_genes <- Map(cbind,
extract_description,
- genes= lapply(extract_description, rownames)
+ genes = lapply(extract_description, rownames)
)
# Then use data.table to collapse all generated dataframe, with the cluster id in first column
# using the {data.table} rbindlist function
cluster_description <- rbindlist(extract_description_w_genes, idcol = "cluster_id")
-cluster_description = cluster_description[ ,c(8, 1, 2, 3,4,5,6,7)] # reorganize columns
+cluster_description <- cluster_description[, c(8, 1, 2, 3, 4, 5, 6, 7)] # reorganize columns
# Finally, output cluster description data frame
@@ -511,34 +502,34 @@
cluster_description,
file = opt$HCPC_cluster_description,
sep = "\t",
- quote = F,
- col.names = T,
- row.names = F
+ quote = FALSE,
+ col.names = TRUE,
+ row.names = FALSE
)
}
## Return coordinates file to user
-if(opt$table_coordinates != ''){
+if (opt$table_coordinates != "") {
write.table(
coord_table,
file = opt$table_coordinates,
sep = "\t",
- quote = F,
- col.names = T,
- row.names = F
+ quote = FALSE,
+ col.names = TRUE,
+ row.names = FALSE
)
}
-if(opt$HCPC_clust != ""){
+if (opt$HCPC_clust != "") {
write.table(
res_clustering,
file = opt$HCPC_clust,
sep = "\t",
- quote = F,
- col.names = T,
- row.names = F
+ quote = FALSE,
+ col.names = TRUE,
+ row.names = FALSE
)
}
diff -r 19bef589f876 -r 18a1dc4aec4a high_dim_visu.xml
--- a/high_dim_visu.xml Wed Jun 24 06:22:53 2020 -0400
+++ b/high_dim_visu.xml Sun May 21 16:26:23 2023 +0000
@@ -7,7 +7,7 @@
r-rtsne
r-ggfortify
r-clusterr
-
+ r-polychrome
diff -r 19bef589f876 -r 18a1dc4aec4a test-data/pca.nolabels.factors.pdf
Binary file test-data/pca.nolabels.factors.pdf has changed