Mercurial > repos > artbio > gsc_mannwhitney_de
view MannWhitney_DE.R @ 3:3d86c89f15bf draft
"planemo upload for repository https://github.com/ARTbio/tools-artbio/tree/master/tools/gsc_mannwhitney_de commit fab41058cef186159d746c55808d0e69f252af2f"
author | artbio |
---|---|
date | Thu, 29 Aug 2019 05:35:04 -0400 |
parents | c67dba545a37 |
children | 6916ac5a9ef0 |
line wrap: on
line source
#################### # Differential # # analysis # #################### # Perform a differential analysis between 2 # groups of cells. # Example of command # Rscript MannWhitney_DE.R --input <input.tsv> --sep <tab> --colnames <TRUE> --metadata <signature.tsv> --column_name <rate> --fdr <0.01> --output <diff_analysis.tsv> # load packages that are provided in the conda env options( show.error.messages=F, error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) loc <- Sys.setlocale("LC_MESSAGES", "en_US.UTF-8") warnings() library(optparse) #Arguments option_list = list( make_option( "--input", default = NA, type = 'character', help = "Input file that contains log2(CPM +1) values" ), make_option( "--sep", default = '\t', type = 'character', help = "File separator [default : '%default' ]" ), make_option( "--colnames", default = TRUE, type = 'logical', help = "Consider first line as header ? [default : '%default' ]" ), make_option( "--comparison_factor_file", default = NA, type = 'character', help = " A two column table : cell identifiers and a comparison factor that split cells in two categories (high/low, HOM/HET,...)" ), make_option( "--factor1", type = 'character', help = "level associated to the control condition in the factor file" ), make_option( "--factor2", type = 'character', help = "level associated to the test condition in the factor file" ), make_option( "--fdr", default = 0.01, type = 'numeric', help = "FDR threshold [default : '%default' ]" ), make_option( "--log", default=FALSE, action="store_true", type = 'logical', help = "Expression data are log-transformed [default : '%default' ]" ), make_option( "--output", default = "results.tsv", type = 'character', help = "Output name [default : '%default' ]" ) ) opt = parse_args(OptionParser(option_list = option_list), args = commandArgs(trailingOnly = TRUE)) if (opt$sep == "tab") {opt$sep = "\t"} if (opt$sep == "comma") {opt$sep = ","} #Open files data.counts <- read.table( opt$input, h = opt$colnames, row.names = 1, sep = opt$sep, check.names = F ) metadata <- read.table( opt$comparison_factor_file, header = TRUE, stringsAsFactors = F, sep = "\t", check.names = FALSE, row.names = 1 ) metadata <- subset(metadata, rownames(metadata) %in% colnames(data.counts)) # Create two logical named vectors for each factor level of cell signature factor1_cells <- setNames(metadata[,1] == opt$factor1, rownames(metadata)) factor2_cells <- setNames(metadata[,1] == opt$factor2, rownames(metadata)) ## Mann-Whitney test (Two-sample Wilcoxon test) MW_test <- data.frame(t(apply(data.counts, 1, function(x) { do.call("cbind", wilcox.test(x[names(factor1_cells)[factor1_cells]], x[names(factor2_cells)[factor2_cells]]))[, 1:2] })), stringsAsFactors = F) # Benjamini-Hochberg correction and significativity MW_test$p.adjust <- p.adjust(as.numeric(MW_test$p.value), method = "BH" , n = nrow(MW_test)) # MW_test$Critical.value <- (rank(MW_test$p.value) / nrow(MW_test)) * opt$fdr MW_test$Significant <- MW_test$p.adjust < opt$fdr ## Descriptive Statistics Function descriptive_stats <- function(InputData) { SummaryData = data.frame( mean = rowMeans(InputData), SD = apply(InputData, 1, sd), Variance = apply(InputData, 1, var), Percentage_Detection = apply(InputData, 1, function(x, y = InputData) { (sum(x != 0) / ncol(y)) * 100 }), mean_condition2 = rowMeans(InputData[,factor2_cells]), mean_condition1 = rowMeans(InputData[, factor1_cells]) ) if(opt$log) { SummaryData$log2FC <- SummaryData$mean_condition2 - SummaryData$mean_condition1 } else { SummaryData$log2FC <- log2(SummaryData$mean_condition2 / SummaryData$mean_condition1) } return(SummaryData) } gene_stats <- descriptive_stats(data.counts) results <- merge(gene_stats, MW_test, by = "row.names") colnames(results)[1] <- "genes" ## Annotate Significant column results$Significant[results$Significant == T & !is.na(results$Significant)] <- ifelse(subset(results, Significant == T)$log2FC > 0, "UP", "DOWN") results$Significant[results$Significant == F & !is.na(results$Significant)] <- "NS" # Save files write.table( results[order(results$p.adjust),], opt$output, sep = "\t", quote = F, col.names = T, row.names = F )