Mercurial > repos > artbio > gsc_scran_normalize
comparison scran_normalize.xml @ 0:252eded61848 draft
"planemo upload for repository https://github.com/ARTbio/tools-artbio/tree/master/tools/gsc_scran_normalize commit ddcf915dd9b690d7f3876e08b939adde36cbb8dd"
| author | artbio |
|---|---|
| date | Thu, 26 Sep 2019 10:50:55 -0400 |
| parents | |
| children | fb2f1b8b0013 |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:252eded61848 |
|---|---|
| 1 <tool id="scran_normalize" name="scran_normalize" version="0.2.0"> | |
| 2 <description>Normalize raw counts expression values using deconvolution size factors</description> | |
| 3 <requirements> | |
| 4 <requirement type="package" version="1.6.2">r-optparse</requirement> | |
| 5 <requirement type="package" version="1.12.1=r36he1b5a44_0">bioconductor-scran</requirement> | |
| 6 </requirements> | |
| 7 <stdio> | |
| 8 <exit_code range="1:" level="fatal" description="Tool exception" /> | |
| 9 </stdio> | |
| 10 <command detect_errors="exit_code"><![CDATA[ | |
| 11 Rscript $__tool_directory__/scran-normalize.R | |
| 12 --data '$input' | |
| 13 --sep '$input_sep' | |
| 14 #if $metacell.cluster == "Yes": | |
| 15 --cluster | |
| 16 --method '$metacell.method' | |
| 17 --size '$metacell.size' | |
| 18 #end if | |
| 19 -o ${output} | |
| 20 ]]></command> | |
| 21 <inputs> | |
| 22 <param name="input" type="data" format="txt,tabular" label="Raw counts of expression data" help = "Must have an header"/> | |
| 23 <param name="input_sep" type="select" label="Input column separator"> | |
| 24 <option value="tab" selected="true">Tabulation</option> | |
| 25 <option value=",">Comma</option> | |
| 26 </param> | |
| 27 <conditional name="metacell"> | |
| 28 <param name="cluster" type="select" label = "Do you want to cluster cells ?" help="Perform scaling method on metacell, see Details"> | |
| 29 <option value="Yes">Yes</option> | |
| 30 <option value="No" selected="true">No</option> | |
| 31 </param> | |
| 32 <when value="Yes"> | |
| 33 <param name="method" type="select" label="Clustering method"> | |
| 34 <option value="hclust" selected="true">hclust</option> | |
| 35 <option value="igraph">igprah</option> | |
| 36 </param> | |
| 37 <param name="size" type="integer" value="100" label="Minimum size of each cluster"/> | |
| 38 </when> | |
| 39 <when value="No"/> | |
| 40 </conditional> | |
| 41 </inputs> | |
| 42 <outputs> | |
| 43 <data name="output" format="tabular" label="Normalized Log counts of ${on_string}"> | |
| 44 </data> | |
| 45 </outputs> | |
| 46 <tests> | |
| 47 <test> | |
| 48 <param name="input" value="counts.tab" ftype="tabular"/> | |
| 49 <output name="output" file="logcounts.tab" ftype="tabular"/> | |
| 50 </test> | |
| 51 <test> | |
| 52 <param name="input" value="counts.tab" ftype="tabular"/> | |
| 53 <param name="cluster" value="Yes"/> | |
| 54 <param name="method" value="igraph"/> | |
| 55 <param name="size" value="25"/> | |
| 56 <output name="output" file="logcounts_igraph.tsv" ftype="tabular"/> | |
| 57 </test> | |
| 58 <test> | |
| 59 <param name="input" value="counts.tab" ftype="tabular"/> | |
| 60 <param name="cluster" value="Yes"/> | |
| 61 <param name="method" value="hclust"/> | |
| 62 <param name="size" value="25"/> | |
| 63 <output name="output" file="logcounts_hclust.tsv" ftype="tabular"/> | |
| 64 </test> | |
| 65 </tests> | |
| 66 <help> | |
| 67 | |
| 68 **What it does** | |
| 69 | |
| 70 Takes a raw count expression matrix and returns a table of log transformed scran-normalized expression values. | |
| 71 | |
| 72 This computes size factors that are used to scale the counts in each cell. The assumption is that | |
| 73 most genes are not differentially expressed (DE) between cells, such that any differences in | |
| 74 expression across the majority of genes represents some technical bias that should be removed. | |
| 75 | |
| 76 Cell-specific biases are normalized using the computeSumFactors method, which implements the | |
| 77 deconvolution strategy for scaling normalization (A. T. Lun, Bach, and Marioni 2016). It creates a reference : | |
| 78 - if no clustering step : the average count of all transcriptomes | |
| 79 - if you choose to cluster your cells : the average count of each cluster. | |
| 80 Then it pools cells and then sum their expression profiles. The size factor is described as the median ration | |
| 81 between the count sums and the average across all genes. Finally it constructs a linear distribution (deconvolution method) | |
| 82 of size factors by taking multiple pools of cells. | |
| 83 | |
| 84 You can apply this method on cell cluster instead of your all set of cells by using quickCluster. | |
| 85 It defines cluster using distances based on Spearman correlation on counts between cells, there is two available methods : | |
| 86 | |
| 87 - *hclust* : hierarchical clustering on the distance matrix and dynamic tree cut. | |
| 88 - *igraph* : constructs a Shared Nearest Neighbor graph (SNN) on the distance matrix and identifies highly connected communities. | |
| 89 | |
| 90 | |
| 91 Note: First header row must NOT start with a '#' comment character | |
| 92 | |
| 93 </help> | |
| 94 <citations> | |
| 95 <citation type="bibtex"> | |
| 96 @Article{, | |
| 97 author = {Aaron T. L. Lun and Davis J. McCarthy and John C. Marioni}, | |
| 98 title = {A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor}, | |
| 99 journal = {F1000Res.}, | |
| 100 year = {2016}, | |
| 101 volume = {5}, | |
| 102 pages = {2122}, | |
| 103 doi = {10.12688/f1000research.9501.2}, | |
| 104 } | |
| 105 </citation> | |
| 106 </citations> | |
| 107 </tool> |
