Mercurial > repos > artbio > gsc_scran_normalize
diff scran-normalize.R @ 3:cc768b0f41cf draft default tip
planemo upload for repository https://github.com/ARTbio/tools-artbio/tree/main/tools/gsc_scran_normalize commit 9ab82433f375b37be5c9acb22e5deb798081dc3b
author | artbio |
---|---|
date | Thu, 07 Nov 2024 22:02:01 +0000 |
parents | 6864acb21714 |
children |
line wrap: on
line diff
--- a/scran-normalize.R Sun Dec 10 00:27:45 2023 +0000 +++ b/scran-normalize.R Thu Nov 07 22:02:01 2024 +0000 @@ -1,8 +1,9 @@ -options(show.error.messages = FALSE, - error = function() { - cat(geterrmessage(), file = stderr()) - q("no", 1, FALSE) - } +options( + show.error.messages = FALSE, + error = function() { + cat(geterrmessage(), file = stderr()) + q("no", 1, FALSE) + } ) loc <- Sys.setlocale("LC_MESSAGES", "en_US.UTF-8") warnings() @@ -13,63 +14,63 @@ # Arguments option_list <- list( - make_option( - c("-d", "--data"), - default = NA, - type = "character", - help = "Input file that contains count values to transform" - ), - make_option( - "--cluster", - default = FALSE, - action = "store_true", - type = "logical", - help = "Whether to calculate the size factor per cluster or on all cell" - ), - make_option( - c("-m", "--method"), - default = "hclust", - type = "character", - help = "The clustering method to use for grouping cells into cluster : hclust or igraph [default : '%default' ]" - ), - make_option( - "--size", - default = 100, - type = "integer", - help = "Minimal number of cells in each cluster : hclust or igraph [default : '%default' ]" - ), - make_option( - c("-o", "--out"), - default = "res.tab", - type = "character", - help = "Output name [default : '%default' ]" - ) + make_option( + c("-d", "--data"), + default = NA, + type = "character", + help = "Input file that contains count values to transform" + ), + make_option( + "--cluster", + default = FALSE, + action = "store_true", + type = "logical", + help = "Whether to calculate the size factor per cluster or on all cell" + ), + make_option( + c("-m", "--method"), + default = "hclust", + type = "character", + help = "The clustering method to use for grouping cells into cluster : hclust or igraph [default : '%default' ]" + ), + make_option( + "--size", + default = 100, + type = "integer", + help = "Minimal number of cells in each cluster : hclust or igraph [default : '%default' ]" + ), + make_option( + c("-o", "--out"), + default = "res.tab", + type = "character", + help = "Output name [default : '%default' ]" + ) ) opt <- parse_args(OptionParser(option_list = option_list), - args = commandArgs(trailingOnly = TRUE)) + args = commandArgs(trailingOnly = TRUE) +) data <- read.table( - opt$data, - check.names = FALSE, - header = TRUE, - row.names = 1, - sep = "\t" + opt$data, + check.names = FALSE, + header = TRUE, + row.names = 1, + sep = "\t" ) ## Import data as a SingleCellExperiment object sce <- SingleCellExperiment(list(counts = as.matrix(data))) if (opt$cluster) { - clusters <- quickCluster(sce, min.size = opt$size, method = opt$method) + clusters <- quickCluster(sce, min.size = opt$size, method = opt$method) - ## Compute sum factors - sce <- computeSumFactors(sce, cluster = clusters) + ## Compute sum factors + sce <- computeSumFactors(sce, cluster = clusters) } else { - - ## Compute sum factors - sce <- computeSumFactors(sce) + ## Compute sum factors + sce <- computeSumFactors(sce) } sce <- logNormCounts(sce) @@ -78,10 +79,10 @@ write.table( - logcounts, - opt$out, - col.names = TRUE, - row.names = FALSE, - quote = FALSE, - sep = "\t" + logcounts, + opt$out, + col.names = TRUE, + row.names = FALSE, + quote = FALSE, + sep = "\t" )