Mercurial > repos > artbio > mutational_patterns
view mutational_patterns.R @ 15:8182d1625433 draft
"planemo upload for repository https://github.com/ARTbio/tools-artbio/tree/master/tools/mutational_patterns commit 6ca5597637439c87b61af2dbd6c38089b29eca37"
author | artbio |
---|---|
date | Sun, 03 Oct 2021 09:29:04 +0000 |
parents | 56c8869a231e |
children | 31e7a33ecd71 |
line wrap: on
line source
# load packages that are provided in the conda env options(show.error.messages = F, error = function() { cat(geterrmessage(), file = stderr()); q("no", 1, F) } ) loc <- Sys.setlocale("LC_MESSAGES", "en_US.UTF-8") warnings() library(optparse) library(rjson) library(grid) library(gridExtra) library(scales) library(RColorBrewer) # Arguments option_list <- list( make_option( "--inputs", default = NA, type = "character", help = "json formatted dictionary of datasets and their paths" ), make_option( "--genome", default = NA, type = "character", help = "genome name in the BSgenome bioconductor package" ), make_option( "--levels", default = NA, type = "character", help = "path to the tab separated file describing the levels in function of datasets" ), make_option( "--cosmic_version", default = "v2", type = "character", help = "Version of the Cosmic Signature set to be used to express mutational patterns" ), make_option( "--signum", default = 2, type = "integer", help = "selects the N most significant signatures in samples to express mutational patterns" ), make_option( "--nrun", default = 2, type = "integer", help = "Number of runs to fit signatures" ), make_option( "--rank", default = 2, type = "integer", help = "number of ranks to display for parameter optimization" ), make_option( "--newsignum", default = 2, type = "integer", help = "Number of new signatures to be captured" ), make_option( "--output_spectrum", default = NA, type = "character", help = "path to output dataset" ), make_option( "--output_denovo", default = NA, type = "character", help = "path to output dataset" ), make_option( "--sigmatrix", default = NA, type = "character", help = "path to signature matrix" ), make_option( "--output_cosmic", default = NA, type = "character", help = "path to output dataset" ), make_option( "--sig_contrib_matrix", default = NA, type = "character", help = "path to signature contribution matrix" ), make_option( c("-r", "--rdata"), type = "character", default = NULL, help = "Path to RData output file") ) opt <- parse_args(OptionParser(option_list = option_list), args = commandArgs(trailingOnly = TRUE)) ################ Manage input data #################### json_dict <- opt$inputs parser <- newJSONParser() parser$addData(json_dict) fileslist <- parser$getObject() vcf_paths <- attr(fileslist, "names") element_identifiers <- unname(unlist(fileslist)) ref_genome <- opt$genome vcf_table <- data.frame(element_identifier = as.character(element_identifiers), path = vcf_paths) library(MutationalPatterns) library(ref_genome, character.only = TRUE) library(ggplot2) # Load the VCF files into a GRangesList: vcfs <- read_vcfs_as_granges(vcf_paths, element_identifiers, ref_genome) library(plyr) if (!is.na(opt$levels)[1]) { # manage levels if there are levels_table <- read.delim(opt$levels, header = FALSE, col.names = c("element_identifier", "level")) } else { levels_table <- data.frame(element_identifier = vcf_table$element_identifier, level = rep("nolabels", length(vcf_table$element_identifier))) } metadata_table <- join(vcf_table, levels_table, by = "element_identifier") tissue <- as.vector(metadata_table$level) detach(package:plyr) ##### This is done for any section ###### mut_mat <- mut_matrix(vcf_list = vcfs, ref_genome = ref_genome) qual_col_pals <- brewer.pal.info[brewer.pal.info$category == "qual", ] col_vector <- unique(unlist(mapply(brewer.pal, qual_col_pals$maxcolors, rownames(qual_col_pals)))) col_vector <- col_vector[c(-32, -34, -39)] # 67-color palette ###### Section 1 Mutation characteristics and spectrums ############# if (!is.na(opt$output_spectrum)[1]) { pdf(opt$output_spectrum, paper = "special", width = 11.69, height = 11.69) type_occurrences <- mut_type_occurrences(vcfs, ref_genome) # mutation spectrum, total or by sample if (length(levels(factor(levels_table$level))) == 1) { p1 <- plot_spectrum(type_occurrences, CT = TRUE, legend = TRUE) plot(p1) } else { p2 <- plot_spectrum(type_occurrences, by = tissue, CT = TRUE) # by levels p3 <- plot_spectrum(type_occurrences, CT = TRUE, legend = TRUE) # total grid.arrange(p2, p3, ncol = 2, widths = c(4, 2.3), heights = c(4, 1)) } plot_96_profile(mut_mat, condensed = TRUE) dev.off() } ###### Section 2: De novo mutational signature extraction using NMF ####### # opt$rank cannot be higher than the number of samples and # likewise, opt$signum cannot be higher thant the number of samples if (!is.na(opt$output_denovo)[1]) { if (opt$rank > length(element_identifiers)) { opt$rank <- length(element_identifiers) } if (opt$signum > length(element_identifiers)) { opt$signum <- length(element_identifiers) } pseudo_mut_mat <- mut_mat + 0.0001 # First add a small pseudocount to the mutation count matrix # Use the NMF package to generate an estimate rank plot library("NMF") estimate <- nmf(pseudo_mut_mat, rank = 1:opt$rank, method = "brunet", nrun = opt$nrun, seed = 123456) # And plot it pdf(opt$output_denovo, paper = "special", width = 11.69, height = 11.69) p4 <- plot(estimate) grid.arrange(p4) # Extract 4 (PARAMETIZE) mutational signatures from the mutation count matrix with extract_signatures # (For larger datasets it is wise to perform more iterations by changing the nrun parameter # to achieve stability and avoid local minima) nmf_res <- extract_signatures(pseudo_mut_mat, rank = opt$newsignum, nrun = opt$nrun) # Assign signature names colnames(nmf_res$signatures) <- paste0("NewSig_", 1:opt$newsignum) rownames(nmf_res$contribution) <- paste0("NewSig_", 1:opt$newsignum) # Plot the 96-profile of the signatures: p5 <- plot_96_profile(nmf_res$signatures, condensed = TRUE) new_sig_matrix <- reshape2::dcast(p5$data, substitution + context ~ sample, value.var = "freq") new_sig_matrix <- format(new_sig_matrix, scientific = TRUE) write.table(new_sig_matrix, file = opt$sigmatrix, quote = FALSE, row.names = FALSE, sep = "\t") grid.arrange(p5) # Visualize the contribution of the signatures in a barplot pc1 <- plot_contribution(nmf_res$contribution, nmf_res$signature, mode = "relative", coord_flip = TRUE) # Visualize the contribution of the signatures in absolute number of mutations pc2 <- plot_contribution(nmf_res$contribution, nmf_res$signature, mode = "absolute", coord_flip = TRUE) # Combine the two plots: grid.arrange(pc1, pc2) # The relative contribution of each signature for each sample can also be plotted as a heatmap with # plot_contribution_heatmap, which might be easier to interpret and compare than stacked barplots. # The samples can be hierarchically clustered based on their euclidean dis- tance. The signatures # can be plotted in a user-specified order. # Plot signature contribution as a heatmap with sample clustering dendrogram and a specified signature order: pch1 <- plot_contribution_heatmap(nmf_res$contribution, sig_order = paste0("NewSig_", 1:opt$newsignum)) # Plot signature contribution as a heatmap without sample clustering: pch2 <- plot_contribution_heatmap(nmf_res$contribution, cluster_samples = FALSE) #Combine the plots into one figure: grid.arrange(pch1, pch2, ncol = 2, widths = c(2, 1.6)) # Compare the reconstructed mutational profile with the original mutational profile: plot_compare_profiles(pseudo_mut_mat[, 1], nmf_res$reconstructed[, 1], profile_names = c("Original", "Reconstructed"), condensed = TRUE) dev.off() } ##### Section 3: Find optimal contribution of known signatures: COSMIC mutational signatures #### if (!is.na(opt$output_cosmic)[1]) { pdf(opt$output_cosmic, paper = "special", width = 11.69, height = 11.69) pseudo_mut_mat <- mut_mat + 0.0001 # First add a small psuedocount to the mutation count matrix if (opt$cosmic_version == "v2") { sp_url <- paste("https://cancer.sanger.ac.uk/cancergenome/assets/", "signatures_probabilities.txt", sep = "") cancer_signatures <- read.table(sp_url, sep = "\t", header = TRUE) new_order <- match(row.names(pseudo_mut_mat), cancer_signatures$Somatic.Mutation.Type) cancer_signatures <- cancer_signatures[as.vector(new_order), ] row.names(cancer_signatures) <- cancer_signatures$Somatic.Mutation.Type cancer_signatures <- as.matrix(cancer_signatures[, 4:33]) colnames(cancer_signatures) <- gsub("Signature.", "", colnames(cancer_signatures)) # shorten signature labels cosmic_tag <- "Signatures (Cosmic v2, March 2015)" cosmic_colors <- col_vector[1:30] names(cosmic_colors) <- colnames(cancer_signatures) } else { sp_url <- "https://raw.githubusercontent.com/ARTbio/startbio/master/sigProfiler_SBS_signatures_2019_05_22.tsv" cancer_signatures <- read.table(sp_url, sep = "\t", header = TRUE) new_order <- match(row.names(pseudo_mut_mat), cancer_signatures$Somatic.Mutation.Type) cancer_signatures <- cancer_signatures[as.vector(new_order), ] row.names(cancer_signatures) <- cancer_signatures$Somatic.Mutation.Type cancer_signatures <- as.matrix(cancer_signatures[, 4:70]) colnames(cancer_signatures) <- gsub("SBS", "", colnames(cancer_signatures)) # shorten signature labels cosmic_tag <- "Signatures (Cosmic v3, May 2019)" cosmic_colors <- col_vector[1:67] names(cosmic_colors) <- colnames(cancer_signatures) } # Plot mutational profiles of the COSMIC signatures if (opt$cosmic_version == "v2") { p6 <- plot_96_profile(cancer_signatures, condensed = TRUE, ymax = 0.3) grid.arrange(p6, top = textGrob("COSMIC signature profiles", gp = gpar(fontsize = 12, font = 3))) } else { p6 <- plot_96_profile(cancer_signatures[, 1:33], condensed = TRUE, ymax = 0.3) p6bis <- plot_96_profile(cancer_signatures[, 34:67], condensed = TRUE, ymax = 0.3) grid.arrange(p6, top = textGrob("COSMIC signature profiles (on two pages)", gp = gpar(fontsize = 12, font = 3))) grid.arrange(p6bis, top = textGrob("COSMIC signature profiles (continued)", gp = gpar(fontsize = 12, font = 3))) } # Find optimal contribution of COSMIC signatures to reconstruct 96 mutational profiles fit_res <- fit_to_signatures(pseudo_mut_mat, cancer_signatures) # Plot contribution barplots pc3 <- plot_contribution(fit_res$contribution, cancer_signatures, coord_flip = T, mode = "absolute") pc4 <- plot_contribution(fit_res$contribution, cancer_signatures, coord_flip = T, mode = "relative") if (is.na(opt$levels)[1]) { # if there are NO levels to display in graphs pc3_data <- pc3$data pc3 <- ggplot(pc3_data, aes(x = Sample, y = Contribution, fill = as.factor(Signature))) + geom_bar(stat = "identity", position = "stack") + coord_flip() + scale_fill_manual(name = "Cosmic\nSignatures", values = cosmic_colors) + labs(x = "Samples", y = "Absolute contribution") + theme_bw() + theme(panel.grid.minor.x = element_blank(), panel.grid.major.x = element_blank(), legend.position = "right", text = element_text(size = 8), axis.text.x = element_text(angle = 90, hjust = 1)) pc4_data <- pc4$data pc4 <- ggplot(pc4_data, aes(x = Sample, y = Contribution, fill = as.factor(Signature))) + geom_bar(stat = "identity", position = "fill") + coord_flip() + scale_fill_manual(name = "Cosmic\nSignatures", values = cosmic_colors) + scale_y_continuous(labels = scales::percent_format(accuracy = 1)) + labs(x = "Samples", y = "Relative contribution") + theme_bw() + theme(panel.grid.minor.x = element_blank(), panel.grid.major.x = element_blank(), legend.position = "right", text = element_text(size = 8), axis.text.x = element_text(angle = 90, hjust = 1)) } ##### # ggplot2 alternative if (!is.na(opt$levels)[1]) { # if there are levels to display in graphs pc3_data <- pc3$data pc3_data <- merge(pc3_data, metadata_table[, c(1, 3)], by.x = "Sample", by.y = "element_identifier") pc3 <- ggplot(pc3_data, aes(x = Sample, y = Contribution, fill = as.factor(Signature))) + geom_bar(stat = "identity", position = "stack") + scale_fill_manual(name = "Cosmic\nSignatures", values = cosmic_colors) + labs(x = "Samples", y = "Absolute contribution") + theme_bw() + theme(panel.grid.minor.x = element_blank(), panel.grid.major.x = element_blank(), legend.position = "right", text = element_text(size = 8), axis.text.x = element_text(angle = 90, hjust = 1)) + facet_grid(~level, scales = "free_x", space = "free") pc4_data <- pc4$data pc4_data <- merge(pc4_data, metadata_table[, c(1, 3)], by.x = "Sample", by.y = "element_identifier") pc4 <- ggplot(pc4_data, aes(x = Sample, y = Contribution, fill = as.factor(Signature))) + geom_bar(stat = "identity", position = "fill") + scale_fill_manual(name = "Cosmic\nSignatures", values = cosmic_colors) + scale_y_continuous(labels = scales::percent_format(accuracy = 1)) + labs(x = "Samples", y = "Relative contribution") + theme_bw() + theme(panel.grid.minor.x = element_blank(), panel.grid.major.x = element_blank(), legend.position = "right", text = element_text(size = 8), axis.text.x = element_text(angle = 90, hjust = 1)) + facet_grid(~level, scales = "free_x", space = "free") } # Combine the two plots: grid.arrange(pc3, pc4, top = textGrob("Absolute and Relative Contributions of Cosmic signatures to mutational patterns", gp = gpar(fontsize = 12, font = 3))) #### pie charts of comic signatures contributions in samples ### library(reshape2) library(dplyr) if (length(levels(factor(levels_table$level))) < 2) { fit_res_contrib <- as.data.frame(fit_res$contribution) worklist <- cbind(signature = rownames(fit_res$contribution), level = rep("nolabels", length(fit_res_contrib[, 1])), fit_res_contrib, sum = rowSums(fit_res_contrib)) worklist <- worklist[order(worklist[, "sum"], decreasing = T), ] worklist <- worklist[1:opt$signum, ] worklist <- worklist[, -length(worklist[1, ])] worklist <- melt(worklist) worklist <- worklist[, c(1, 3, 4, 2)] } else { worklist <- list() for (i in levels(factor(levels_table$level))) { fit_res$contribution[, levels_table$element_identifier[levels_table$level == i]] -> worklist[[i]] sum <- rowSums(as.data.frame(worklist[[i]])) worklist[[i]] <- cbind(worklist[[i]], sum) worklist[[i]] <- worklist[[i]][order(worklist[[i]][, "sum"], decreasing = T), ] worklist[[i]] <- worklist[[i]][1:opt$signum, ] worklist[[i]] <- worklist[[i]][, -length(as.data.frame(worklist[[i]]))] } worklist <- as.data.frame(melt(worklist)) worklist[, 2] <- paste0(worklist[, 4], " - ", worklist[, 2]) } colnames(worklist) <- c("signature", "sample", "value", "level") worklist <- as.data.frame(worklist %>% group_by(sample) %>% mutate(value = value / sum(value) * 100)) worklist$pos <- cumsum(worklist$value) - worklist$value / 2 worklist$label <- factor(worklist$signature) worklist$signature <- factor(worklist$signature) p7 <- ggplot(worklist, aes(x = "", y = value, group = signature, fill = signature)) + geom_bar(width = 1, stat = "identity") + geom_text(aes(label = label), position = position_stack(vjust = 0.5), color = "black", size = 3) + coord_polar("y", start = 0) + facet_wrap(.~sample) + labs(x = "", y = "Samples", fill = cosmic_tag) + scale_fill_manual(name = paste0(opt$signum, " most contributing\nsignatures\n(in each label/tissue)"), values = cosmic_colors[levels(worklist$signature)]) + theme(axis.text = element_blank(), axis.ticks = element_blank(), panel.grid = element_blank()) grid.arrange(p7) # Plot relative contribution of the cancer signatures in each sample as a heatmap with sample clustering if (length(vcf_paths) > 1) { p8 <- plot_contribution_heatmap(fit_res$contribution, cluster_samples = TRUE, method = "complete") grid.arrange(p8) } # export relative contribution matrix if (!is.na(opt$sig_contrib_matrix)) { output_table <- t(fit_res$contribution) / rowSums(t(fit_res$contribution)) colnames(output_table) <- paste0("s", colnames(output_table)) if (length(levels(factor(levels_table$level))) > 1) { output_table <- data.frame(sample = paste0(metadata_table[metadata_table$element_identifier == colnames(fit_res$contribution), 3], "-", colnames(fit_res$contribution)), output_table) } else { output_table <- data.frame(sample = rownames(output_table), output_table) } write.table(output_table, file = opt$sig_contrib_matrix, sep = "\t", quote = F, row.names = F) } # calculate all pairwise cosine similarities cos_sim_ori_rec <- cos_sim_matrix(pseudo_mut_mat, fit_res$reconstructed) # extract cosine similarities per sample between original and reconstructed cos_sim_ori_rec <- as.data.frame(diag(cos_sim_ori_rec)) # We can use ggplot to make a barplot of the cosine similarities between the original and # reconstructed mutational profile of each sample. This clearly shows how well each mutational # profile can be reconstructed with the COSMIC mutational signatures. Two identical profiles # have a cosine similarity of 1. The lower the cosine similarity between original and # reconstructed, the less well the original mutational profile can be reconstructed with # the COSMIC signatures. You could use, for example, cosine similarity of 0.95 as a cutoff. # Adjust data frame for plotting with gpplot colnames(cos_sim_ori_rec) <- "cos_sim" cos_sim_ori_rec$sample <- row.names(cos_sim_ori_rec) # Make barplot p9 <- ggplot(cos_sim_ori_rec, aes(y = cos_sim, x = sample)) + geom_bar(stat = "identity", fill = "skyblue4") + coord_cartesian(ylim = c(0.8, 1)) + # coord_flip(ylim=c(0.8,1)) + ylab("Cosine similarity\n original VS reconstructed") + xlab("") + # Reverse order of the samples such that first is up # xlim(rev(levels(factor(cos_sim_ori_rec$sample)))) + theme_bw() + theme(panel.grid.minor.y = element_blank(), panel.grid.major.y = element_blank()) + # Add cut.off line geom_hline(aes(yintercept = .95)) grid.arrange(p9, top = textGrob("Similarity between true and reconstructed profiles (with all Cosmic sig.)", gp = gpar(fontsize = 12, font = 3))) dev.off() } # Output RData file if (!is.null(opt$rdata)) { save.image(file = opt$rdata) }