Mercurial > repos > artbio > mutational_patterns
view mutational_patterns.R @ 1:921c1f55481d draft
"planemo upload for repository https://github.com/ARTbio/tools-artbio/tree/master/tools/mutational_patterns commit ca3b3ab85c8224821c76ebd56b1be2441a28f609"
author | artbio |
---|---|
date | Sun, 13 Sep 2020 22:27:03 +0000 |
parents | 924c527fb379 |
children | aea952be68cb |
line wrap: on
line source
# load packages that are provided in the conda env options( show.error.messages=F, error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) loc <- Sys.setlocale("LC_MESSAGES", "en_US.UTF-8") warnings() library(optparse) library(rjson) library(MutationalPatterns) library(ggplot2) # Arguments option_list = list( make_option( "--inputs", default = NA, type = 'character', help = "json formatted dictionary of datasets and their paths" ), make_option( "--genome", default = NA, type = 'character', help = "genome name in the BSgenome bioconductor package" ), make_option( "--levels", default = NA, type = 'character', help = "path to the tab separated file describing the levels in function of datasets" ), make_option( "--signum", default = 2, type = 'integer', help = "selects the N most significant signatures in samples to express mutational patterns" ), make_option( "--output", default = NA, type = 'character', help = "path to output dataset" ) ) opt = parse_args(OptionParser(option_list = option_list), args = commandArgs(trailingOnly = TRUE)) json_dict <- opt$inputs parser <- newJSONParser() parser$addData(json_dict) fileslist <- parser$getObject() vcf_files <- attr(fileslist, "names") sample_names <- unname(unlist(fileslist)) pdf(opt$output, paper = "special", width = 11.69, height = 11.69) ref_genome <- opt$genome library(ref_genome, character.only = TRUE) # Load the VCF files into a GRangesList: vcfs <- read_vcfs_as_granges(vcf_files, sample_names, ref_genome) levels_table <- read.delim(opt$levels, header=FALSE, col.names=c("sample_name","level")) vcf_table <- data.frame(path=vcf_files, sample_name=sample_names) metadata_table <- merge(vcf_table, levels_table, by.x=2, by.y=1) levels <- metadata_table$level muts = mutations_from_vcf(vcfs[[1]]) types = mut_type(vcfs[[1]]) context = mut_context(vcfs[[1]], ref_genome) type_context = type_context(vcfs[[1]], ref_genome) type_occurrences <- mut_type_occurrences(vcfs, ref_genome) # p1 <- plot_spectrum(type_occurrences) # p2 <- plot_spectrum(type_occurrences, CT = TRUE) # p3 <- plot_spectrum(type_occurrences, CT = TRUE, legend = FALSE) # # plot(p2) # p4 <- plot_spectrum(type_occurrences, by = levels, CT = TRUE, legend = TRUE) # palette <- c("pink", "orange", "blue", "lightblue", "green", "red", "purple") # p5 <- plot_spectrum(type_occurrences, CT=TRUE, legend=TRUE, colors=palette) # # plot(p4) mut_mat <- mut_matrix(vcf_list = vcfs, ref_genome = ref_genome) # plot_96_profile(mut_mat[,1:length(as.data.frame(mut_mat))], condensed = TRUE) mut_mat <- mut_mat + 0.0001 # library("NMF") # estimate <- nmf(mut_mat, rank=2:5, method="brunet", nrun=100, seed=123456) # plot(estimate) # nmf_res <- extract_signatures(mut_mat, rank = 4, nrun = 100) # colnames(nmf_res$signatures) <- c("Signature A", "Signature B", "Signature C", "Signature D") # rownames(nmf_res$contribution) <- c("Signature A", "Signature B", "Signature C", "Signature D") # plot_96_profile(nmf_res$signatures, condensed = TRUE) sp_url <- paste("https://cancer.sanger.ac.uk/cancergenome/assets/", "signatures_probabilities.txt", sep = "") cancer_signatures = read.table(sp_url, sep = "\t", header = TRUE) new_order = match(row.names(mut_mat), cancer_signatures$Somatic.Mutation.Type) cancer_signatures = cancer_signatures[as.vector(new_order),] row.names(cancer_signatures) = cancer_signatures$Somatic.Mutation.Type cancer_signatures = as.matrix(cancer_signatures[,4:33]) # plot_96_profile(cancer_signatures, condensed = TRUE, ymax = 0.3) hclust_cosmic = cluster_signatures(cancer_signatures, method = "average") cosmic_order = colnames(cancer_signatures)[hclust_cosmic$order] # plot(hclust_cosmic) cos_sim(mut_mat[,1], cancer_signatures[,1]) cos_sim_samples_signatures = cos_sim_matrix(mut_mat, cancer_signatures) plot_cosine_heatmap(cos_sim_samples_signatures, col_order = cosmic_order, cluster_rows = TRUE) fit_res <- fit_to_signatures(mut_mat, cancer_signatures) threshold <- tail(sort(unlist(rowSums(fit_res$contribution), use.names = FALSE)), opt$signum)[1] select <- which(rowSums(fit_res$contribution) >= threshold) # ensure opt$signum best signatures in samples are retained, the others discarded plot_contribution(fit_res$contribution[select,], cancer_signatures[,select], coord_flip = T, mode = "absolute") plot_contribution(fit_res$contribution[select,], cancer_signatures[,select], coord_flip = T, mode = "relative") plot_contribution_heatmap(fit_res$contribution, cluster_samples = TRUE, method = "complete") sig5data <- as.data.frame(t(head(fit_res$contribution[select,]))) colnames(sig5data) <- gsub("nature", "", colnames(sig5data)) sig5data_percents <- sig5data / (apply(sig5data,1,sum)) * 100 sig5data_percents$sample <- rownames(sig5data_percents) library(reshape2) melted_sig5data_percents <-melt(data=sig5data_percents) melted_sig5data_percents$label <- sub("Sig.", "", melted_sig5data_percents$variable) melted_sig5data_percents$pos <- cumsum(melted_sig5data_percents$value) - melted_sig5data_percents$value/2 ggplot(melted_sig5data_percents, aes(x="", y=value, group=variable, fill=variable)) + geom_bar(width = 1, stat = "identity") + geom_text(aes(label = label), position = position_stack(vjust = 0.5), color="black", size=3) + coord_polar("y", start=0) + facet_wrap(~ sample) + labs(x="", y="Samples", fill = "Signatures (Cosmic_v2,March 2015)") + theme(axis.text = element_blank(), axis.ticks = element_blank(), panel.grid = element_blank()) dev.off()