Mercurial > repos > artbio > mutational_patterns
changeset 14:56c8869a231e draft
"planemo upload for repository https://github.com/ARTbio/tools-artbio/tree/master/tools/mutational_patterns commit 518fb067e8206ecafbf673a5e4cf375ccead11e3"
author | artbio |
---|---|
date | Fri, 04 Jun 2021 22:35:48 +0000 |
parents | 6741b819cc15 |
children | 8182d1625433 |
files | mutational_patterns.R mutational_patterns.xml |
diffstat | 2 files changed, 167 insertions(+), 144 deletions(-) [+] |
line wrap: on
line diff
--- a/mutational_patterns.R Thu Oct 22 23:29:28 2020 +0000 +++ b/mutational_patterns.R Fri Jun 04 22:35:48 2021 +0000 @@ -1,6 +1,9 @@ # load packages that are provided in the conda env -options( show.error.messages=F, - error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) +options(show.error.messages = F, + error = function() { + cat(geterrmessage(), file = stderr()); q("no", 1, F) + } + ) loc <- Sys.setlocale("LC_MESSAGES", "en_US.UTF-8") warnings() library(optparse) @@ -11,93 +14,93 @@ library(RColorBrewer) # Arguments -option_list = list( +option_list <- list( make_option( "--inputs", default = NA, - type = 'character', + type = "character", help = "json formatted dictionary of datasets and their paths" ), make_option( "--genome", default = NA, - type = 'character', + type = "character", help = "genome name in the BSgenome bioconductor package" ), make_option( "--levels", default = NA, - type = 'character', + type = "character", help = "path to the tab separated file describing the levels in function of datasets" ), make_option( "--cosmic_version", default = "v2", - type = 'character', + type = "character", help = "Version of the Cosmic Signature set to be used to express mutational patterns" ), make_option( "--signum", default = 2, - type = 'integer', + type = "integer", help = "selects the N most significant signatures in samples to express mutational patterns" ), make_option( "--nrun", default = 2, - type = 'integer', + type = "integer", help = "Number of runs to fit signatures" ), make_option( "--rank", default = 2, - type = 'integer', + type = "integer", help = "number of ranks to display for parameter optimization" ), make_option( "--newsignum", default = 2, - type = 'integer', + type = "integer", help = "Number of new signatures to be captured" ), make_option( "--output_spectrum", default = NA, - type = 'character', + type = "character", help = "path to output dataset" ), make_option( "--output_denovo", default = NA, - type = 'character', + type = "character", help = "path to output dataset" ), make_option( "--sigmatrix", default = NA, - type = 'character', + type = "character", help = "path to signature matrix" ), make_option( "--output_cosmic", default = NA, - type = 'character', + type = "character", help = "path to output dataset" ), make_option( "--sig_contrib_matrix", default = NA, - type = 'character', + type = "character", help = "path to signature contribution matrix" ), make_option( c("-r", "--rdata"), - type="character", - default=NULL, - help="Path to RData output file") + type = "character", + default = NULL, + help = "Path to RData output file") ) -opt = parse_args(OptionParser(option_list = option_list), +opt <- parse_args(OptionParser(option_list = option_list), args = commandArgs(trailingOnly = TRUE)) ################ Manage input data #################### @@ -108,7 +111,7 @@ vcf_paths <- attr(fileslist, "names") element_identifiers <- unname(unlist(fileslist)) ref_genome <- opt$genome -vcf_table <- data.frame(element_identifier=as.character(element_identifiers), path=vcf_paths) +vcf_table <- data.frame(element_identifier = as.character(element_identifiers), path = vcf_paths) library(MutationalPatterns) library(ref_genome, character.only = TRUE) @@ -118,10 +121,11 @@ vcfs <- read_vcfs_as_granges(vcf_paths, element_identifiers, ref_genome) library(plyr) if (!is.na(opt$levels)[1]) { # manage levels if there are - levels_table <- read.delim(opt$levels, header=FALSE, col.names=c("element_identifier","level")) + levels_table <- read.delim(opt$levels, header = FALSE, + col.names = c("element_identifier", "level")) } else { - levels_table <- data.frame(element_identifier=vcf_table$element_identifier, - level=rep("nolabels", length(vcf_table$element_identifier))) + levels_table <- data.frame(element_identifier = vcf_table$element_identifier, + level = rep("nolabels", length(vcf_table$element_identifier))) } metadata_table <- join(vcf_table, levels_table, by = "element_identifier") tissue <- as.vector(metadata_table$level) @@ -129,39 +133,44 @@ ##### This is done for any section ###### mut_mat <- mut_matrix(vcf_list = vcfs, ref_genome = ref_genome) -qual_col_pals = brewer.pal.info[brewer.pal.info$category == 'qual',] -col_vector = unique(unlist(mapply(brewer.pal, qual_col_pals$maxcolors, rownames(qual_col_pals)))) +qual_col_pals <- brewer.pal.info[brewer.pal.info$category == "qual", ] +col_vector <- unique(unlist(mapply(brewer.pal, qual_col_pals$maxcolors, rownames(qual_col_pals)))) col_vector <- col_vector[c(-32, -34, -39)] # 67-color palette ###### Section 1 Mutation characteristics and spectrums ############# if (!is.na(opt$output_spectrum)[1]) { pdf(opt$output_spectrum, paper = "special", width = 11.69, height = 11.69) type_occurrences <- mut_type_occurrences(vcfs, ref_genome) - + # mutation spectrum, total or by sample - - if (length(levels(factor(levels_table$level))) == 1) { # (is.na(opt$levels)[1]) - p1 <- plot_spectrum(type_occurrences, CT = TRUE, legend=TRUE) + + if (length(levels(factor(levels_table$level))) == 1) { + p1 <- plot_spectrum(type_occurrences, CT = TRUE, legend = TRUE) plot(p1) } else { - p2 <- plot_spectrum(type_occurrences, by = tissue, CT=TRUE) # by levels - p3 <- plot_spectrum(type_occurrences, CT=TRUE, legend=TRUE) # total - grid.arrange(p2, p3, ncol=2, widths=c(4,2.3), heights=c(4,1)) + p2 <- plot_spectrum(type_occurrences, by = tissue, CT = TRUE) # by levels + p3 <- plot_spectrum(type_occurrences, CT = TRUE, legend = TRUE) # total + grid.arrange(p2, p3, ncol = 2, widths = c(4, 2.3), heights = c(4, 1)) } plot_96_profile(mut_mat, condensed = TRUE) dev.off() } ###### Section 2: De novo mutational signature extraction using NMF ####### +# opt$rank cannot be higher than the number of samples and +# likewise, opt$signum cannot be higher thant the number of samples if (!is.na(opt$output_denovo)[1]) { - # opt$rank cannot be higher than the number of samples - if (opt$rank > length(element_identifiers)) {opt$rank <-length(element_identifiers)} - # likewise, opt$signum cannot be higher thant the number of samples - if (opt$signum > length(element_identifiers)) {opt$signum <-length(element_identifiers)} + + if (opt$rank > length(element_identifiers)) { + opt$rank <- length(element_identifiers) + } + if (opt$signum > length(element_identifiers)) { + opt$signum <- length(element_identifiers) + } pseudo_mut_mat <- mut_mat + 0.0001 # First add a small pseudocount to the mutation count matrix # Use the NMF package to generate an estimate rank plot library("NMF") - estimate <- nmf(pseudo_mut_mat, rank=1:opt$rank, method="brunet", nrun=opt$nrun, seed=123456) + estimate <- nmf(pseudo_mut_mat, rank = 1:opt$rank, method = "brunet", nrun = opt$nrun, seed = 123456) # And plot it pdf(opt$output_denovo, paper = "special", width = 11.69, height = 11.69) p4 <- plot(estimate) @@ -169,23 +178,23 @@ # Extract 4 (PARAMETIZE) mutational signatures from the mutation count matrix with extract_signatures # (For larger datasets it is wise to perform more iterations by changing the nrun parameter # to achieve stability and avoid local minima) - nmf_res <- extract_signatures(pseudo_mut_mat, rank=opt$newsignum, nrun=opt$nrun) + nmf_res <- extract_signatures(pseudo_mut_mat, rank = opt$newsignum, nrun = opt$nrun) # Assign signature names colnames(nmf_res$signatures) <- paste0("NewSig_", 1:opt$newsignum) rownames(nmf_res$contribution) <- paste0("NewSig_", 1:opt$newsignum) # Plot the 96-profile of the signatures: p5 <- plot_96_profile(nmf_res$signatures, condensed = TRUE) new_sig_matrix <- reshape2::dcast(p5$data, substitution + context ~ variable, value.var = "value") - new_sig_matrix = format(new_sig_matrix, scientific=TRUE) - write.table(new_sig_matrix, file=opt$sigmatrix, quote = FALSE, row.names = FALSE, sep="\t") + new_sig_matrix <- format(new_sig_matrix, scientific = TRUE) + write.table(new_sig_matrix, file = opt$sigmatrix, quote = FALSE, row.names = FALSE, sep = "\t") grid.arrange(p5) # Visualize the contribution of the signatures in a barplot - pc1 <- plot_contribution(nmf_res$contribution, nmf_res$signature, mode="relative", coord_flip = TRUE) + pc1 <- plot_contribution(nmf_res$contribution, nmf_res$signature, mode = "relative", coord_flip = TRUE) # Visualize the contribution of the signatures in absolute number of mutations - pc2 <- plot_contribution(nmf_res$contribution, nmf_res$signature, mode="absolute", coord_flip = TRUE) + pc2 <- plot_contribution(nmf_res$contribution, nmf_res$signature, mode = "absolute", coord_flip = TRUE) # Combine the two plots: grid.arrange(pc1, pc2) - + # The relative contribution of each signature for each sample can also be plotted as a heatmap with # plot_contribution_heatmap, which might be easier to interpret and compare than stacked barplots. # The samples can be hierarchically clustered based on their euclidean dis- tance. The signatures @@ -194,17 +203,17 @@ pch1 <- plot_contribution_heatmap(nmf_res$contribution, sig_order = paste0("NewSig_", 1:opt$newsignum)) # Plot signature contribution as a heatmap without sample clustering: - pch2 <- plot_contribution_heatmap(nmf_res$contribution, cluster_samples=FALSE) + pch2 <- plot_contribution_heatmap(nmf_res$contribution, cluster_samples = FALSE) #Combine the plots into one figure: - grid.arrange(pch1, pch2, ncol = 2, widths = c(2,1.6)) - - # Compare the reconstructed mutational profile with the original mutational profile: - plot_compare_profiles(pseudo_mut_mat[,1], - nmf_res$reconstructed[,1], + grid.arrange(pch1, pch2, ncol = 2, widths = c(2, 1.6)) + + # Compare the reconstructed mutational profile with the original mutational profile: + plot_compare_profiles(pseudo_mut_mat[, 1], + nmf_res$reconstructed[, 1], profile_names = c("Original", "Reconstructed"), condensed = TRUE) dev.off() -} + } ##### Section 3: Find optimal contribution of known signatures: COSMIC mutational signatures #### if (!is.na(opt$output_cosmic)[1]) { @@ -212,38 +221,40 @@ pseudo_mut_mat <- mut_mat + 0.0001 # First add a small psuedocount to the mutation count matrix if (opt$cosmic_version == "v2") { sp_url <- paste("https://cancer.sanger.ac.uk/cancergenome/assets/", "signatures_probabilities.txt", sep = "") - cancer_signatures = read.table(sp_url, sep = "\t", header = TRUE) - new_order = match(row.names(pseudo_mut_mat), cancer_signatures$Somatic.Mutation.Type) - cancer_signatures = cancer_signatures[as.vector(new_order),] - row.names(cancer_signatures) = cancer_signatures$Somatic.Mutation.Type - cancer_signatures = as.matrix(cancer_signatures[,4:33]) + cancer_signatures <- read.table(sp_url, sep = "\t", header = TRUE) + new_order <- match(row.names(pseudo_mut_mat), cancer_signatures$Somatic.Mutation.Type) + cancer_signatures <- cancer_signatures[as.vector(new_order), ] + row.names(cancer_signatures) <- cancer_signatures$Somatic.Mutation.Type + cancer_signatures <- as.matrix(cancer_signatures[, 4:33]) colnames(cancer_signatures) <- gsub("Signature.", "", colnames(cancer_signatures)) # shorten signature labels cosmic_tag <- "Signatures (Cosmic v2, March 2015)" cosmic_colors <- col_vector[1:30] } else { sp_url <- "https://raw.githubusercontent.com/ARTbio/startbio/master/sigProfiler_SBS_signatures_2019_05_22.tsv" - cancer_signatures = read.table(sp_url, sep = "\t", header = TRUE) - new_order = match(row.names(pseudo_mut_mat), cancer_signatures$Somatic.Mutation.Type) - cancer_signatures = cancer_signatures[as.vector(new_order),] - row.names(cancer_signatures) = cancer_signatures$Somatic.Mutation.Type - cancer_signatures = as.matrix(cancer_signatures[,4:70]) + cancer_signatures <- read.table(sp_url, sep = "\t", header = TRUE) + new_order <- match(row.names(pseudo_mut_mat), cancer_signatures$Somatic.Mutation.Type) + cancer_signatures <- cancer_signatures[as.vector(new_order), ] + row.names(cancer_signatures) <- cancer_signatures$Somatic.Mutation.Type + cancer_signatures <- as.matrix(cancer_signatures[, 4:70]) colnames(cancer_signatures) <- gsub("SBS", "", colnames(cancer_signatures)) # shorten signature labels cosmic_tag <- "Signatures (Cosmic v3, May 2019)" cosmic_colors <- col_vector[1:67] } - + # Plot mutational profiles of the COSMIC signatures if (opt$cosmic_version == "v2") { p6 <- plot_96_profile(cancer_signatures, condensed = TRUE, ymax = 0.3) - grid.arrange(p6, top = textGrob("COSMIC signature profiles",gp=gpar(fontsize=12,font=3))) + grid.arrange(p6, top = textGrob("COSMIC signature profiles", gp = gpar(fontsize = 12, font = 3))) } else { - p6 <- plot_96_profile(cancer_signatures[,1:33], condensed = TRUE, ymax = 0.3) - p6bis <- plot_96_profile(cancer_signatures[,34:67], condensed = TRUE, ymax = 0.3) - grid.arrange(p6, top = textGrob("COSMIC signature profiles (on two pages)",gp=gpar(fontsize=12,font=3))) - grid.arrange(p6bis, top = textGrob("COSMIC signature profiles (continued)",gp=gpar(fontsize=12,font=3))) + p6 <- plot_96_profile(cancer_signatures[, 1:33], condensed = TRUE, ymax = 0.3) + p6bis <- plot_96_profile(cancer_signatures[, 34:67], condensed = TRUE, ymax = 0.3) + grid.arrange(p6, top = textGrob("COSMIC signature profiles (on two pages)", + gp = gpar(fontsize = 12, font = 3))) + grid.arrange(p6bis, top = textGrob("COSMIC signature profiles (continued)", + gp = gpar(fontsize = 12, font = 3))) } - + # Find optimal contribution of COSMIC signatures to reconstruct 96 mutational profiles fit_res <- fit_to_signatures(pseudo_mut_mat, cancer_signatures) @@ -251,91 +262,99 @@ pc3 <- plot_contribution(fit_res$contribution, cancer_signatures, coord_flip = T, mode = "absolute") pc4 <- plot_contribution(fit_res$contribution, cancer_signatures, coord_flip = T, mode = "relative") pc3_data <- pc3$data - pc3 <- ggplot(pc3_data, aes(x=Sample, y=Contribution, fill=as.factor(Signature))) + - geom_bar(stat="identity", position='stack') + + pc3 <- ggplot(pc3_data, aes(x = Sample, y = Contribution, fill = as.factor(Signature))) + + geom_bar(stat = "identity", position = "stack") + coord_flip() + scale_fill_manual(name = "Cosmic\nSignatures", values = cosmic_colors) + - labs(x = "Samples", y = "Absolute contribution") + theme_bw() + - theme(panel.grid.minor.x = element_blank(), panel.grid.major.x = element_blank(), legend.position="right", - text = element_text(size=8), - axis.text.x = element_text(angle=90, hjust=1)) + labs(x = "Samples", y = "Absolute contribution") + theme_bw() + + theme(panel.grid.minor.x = element_blank(), + panel.grid.major.x = element_blank(), + legend.position = "right", + text = element_text(size = 8), + axis.text.x = element_text(angle = 90, hjust = 1)) pc4_data <- pc4$data - pc4 <- ggplot(pc4_data, aes(x=Sample, y=Contribution, fill=as.factor(Signature))) + - geom_bar(stat="identity", position='fill') + + pc4 <- ggplot(pc4_data, aes(x = Sample, y = Contribution, fill = as.factor(Signature))) + + geom_bar(stat = "identity", position = "fill") + coord_flip() + scale_fill_manual(name = "Cosmic\nSignatures", values = cosmic_colors) + scale_y_continuous(labels = scales::percent_format(accuracy = 1)) + - labs(x = "Samples", y = "Relative contribution") + theme_bw() + - theme(panel.grid.minor.x = element_blank(), panel.grid.major.x = element_blank(), legend.position="right", - text = element_text(size=8), - axis.text.x = element_text(angle=90, hjust=1)) + labs(x = "Samples", y = "Relative contribution") + theme_bw() + + theme(panel.grid.minor.x = element_blank(), panel.grid.major.x = element_blank(), legend.position = "right", + text = element_text(size = 8), + axis.text.x = element_text(angle = 90, hjust = 1)) ##### # ggplot2 alternative if (!is.na(opt$levels)[1]) { # if there are levels to display in graphs pc3_data <- pc3$data - pc3_data <- merge (pc3_data, metadata_table[,c(1,3)], by.x="Sample", by.y="element_identifier") - pc3 <- ggplot(pc3_data, aes(x=Sample, y=Contribution, fill=as.factor(Signature))) + - geom_bar(stat="identity", position='stack') + + pc3_data <- merge(pc3_data, metadata_table[, c(1, 3)], by.x = "Sample", by.y = "element_identifier") + pc3 <- ggplot(pc3_data, aes(x = Sample, y = Contribution, fill = as.factor(Signature))) + + geom_bar(stat = "identity", position = "stack") + scale_fill_manual(name = "Cosmic\nSignatures", values = cosmic_colors) + - labs(x = "Samples", y = "Absolute contribution") + theme_bw() + - theme(panel.grid.minor.x = element_blank(), panel.grid.major.x = element_blank(), legend.position="right", - text = element_text(size=8), - axis.text.x = element_text(angle=90, hjust=1)) + - facet_grid(~level, scales = "free_x", space="free") + labs(x = "Samples", y = "Absolute contribution") + theme_bw() + + theme(panel.grid.minor.x = element_blank(), + panel.grid.major.x = element_blank(), + legend.position = "right", + text = element_text(size = 8), + axis.text.x = element_text(angle = 90, hjust = 1)) + + facet_grid(~level, scales = "free_x", space = "free") pc4_data <- pc4$data - pc4_data <- merge (pc4_data, metadata_table[,c(1,3)], by.x="Sample", by.y="element_identifier") - pc4 <- ggplot(pc4_data, aes(x=Sample, y=Contribution, fill=as.factor(Signature))) + - geom_bar(stat="identity", position='fill') + + pc4_data <- merge(pc4_data, metadata_table[, c(1, 3)], by.x = "Sample", by.y = "element_identifier") + pc4 <- ggplot(pc4_data, aes(x = Sample, y = Contribution, fill = as.factor(Signature))) + + geom_bar(stat = "identity", position = "fill") + scale_fill_manual(name = "Cosmic\nSignatures", values = cosmic_colors) + scale_y_continuous(labels = scales::percent_format(accuracy = 1)) + - labs(x = "Samples", y = "Relative contribution") + theme_bw() + - theme(panel.grid.minor.x = element_blank(), panel.grid.major.x = element_blank(), legend.position="right", - text = element_text(size=8), - axis.text.x = element_text(angle=90, hjust=1)) + - facet_grid(~level, scales = "free_x", space="free") + labs(x = "Samples", y = "Relative contribution") + theme_bw() + + theme(panel.grid.minor.x = element_blank(), + panel.grid.major.x = element_blank(), + legend.position = "right", + text = element_text(size = 8), + axis.text.x = element_text(angle = 90, hjust = 1)) + + facet_grid(~level, scales = "free_x", space = "free") } # Combine the two plots: - grid.arrange(pc3, pc4, top = textGrob("Absolute and Relative Contributions of Cosmic signatures to mutational patterns",gp=gpar(fontsize=12,font=3))) - + grid.arrange(pc3, pc4, + top = textGrob("Absolute and Relative Contributions of Cosmic signatures to mutational patterns", + gp = gpar(fontsize = 12, font = 3))) + #### pie charts of comic signatures contributions in samples ### library(reshape2) library(dplyr) if (length(levels(factor(levels_table$level))) < 2) { fit_res_contrib <- as.data.frame(fit_res$contribution) - worklist <- cbind(signature=rownames(fit_res$contribution), - level=rep("nolabels", length(fit_res_contrib[,1])), + worklist <- cbind(signature = rownames(fit_res$contribution), + level = rep("nolabels", length(fit_res_contrib[, 1])), fit_res_contrib, - sum=rowSums(fit_res_contrib)) - worklist <- worklist[order(worklist[ ,"sum"], decreasing = T), ] - worklist <- worklist[1:opt$signum,] - worklist <- worklist[ , -length(worklist[1,])] + sum = rowSums(fit_res_contrib)) + worklist <- worklist[order(worklist[, "sum"], decreasing = T), ] + worklist <- worklist[1:opt$signum, ] + worklist <- worklist[, -length(worklist[1, ])] worklist <- melt(worklist) - worklist <- worklist[,c(1,3,4,2)] + worklist <- worklist[, c(1, 3, 4, 2)] } else { worklist <- list() for (i in levels(factor(levels_table$level))) { - fit_res$contribution[,levels_table$element_identifier[levels_table$level == i]] -> worklist[[i]] + fit_res$contribution[, levels_table$element_identifier[levels_table$level == i]] -> worklist[[i]] sum <- rowSums(as.data.frame(worklist[[i]])) worklist[[i]] <- cbind(worklist[[i]], sum) - worklist[[i]] <- worklist[[i]][order(worklist[[i]][ ,"sum"], decreasing = T), ] - worklist[[i]] <- worklist[[i]][1:opt$signum,] - worklist[[i]] <- worklist[[i]][ , -length(as.data.frame(worklist[[i]]))] + worklist[[i]] <- worklist[[i]][order(worklist[[i]][, "sum"], decreasing = T), ] + worklist[[i]] <- worklist[[i]][1:opt$signum, ] + worklist[[i]] <- worklist[[i]][, -length(as.data.frame(worklist[[i]]))] } worklist <- as.data.frame(melt(worklist)) - worklist[,2] <- paste0(worklist[,4], " - ", worklist[,2]) + worklist[, 2] <- paste0(worklist[, 4], " - ", worklist[, 2]) head(worklist) } - + colnames(worklist) <- c("signature", "sample", "value", "level") - worklist <- as.data.frame(worklist %>% group_by(sample) %>% mutate(value=value/sum(value)*100)) - worklist$pos <- cumsum(worklist$value) - worklist$value/2 + worklist <- as.data.frame(worklist %>% group_by(sample) %>% mutate(value = value / sum(value) * 100)) + worklist$pos <- cumsum(worklist$value) - worklist$value / 2 worklist$label <- factor(worklist$signature) worklist$signature <- factor(worklist$signature) - p7 <- ggplot(worklist, aes(x="", y=value, group=signature, fill=signature)) + + p7 <- ggplot(worklist, aes(x = "", y = value, group = signature, fill = signature)) + geom_bar(width = 1, stat = "identity") + - geom_text(aes(label = label), position = position_stack(vjust = 0.5), color="black", size=3) + - coord_polar("y", start=0) + facet_wrap(.~sample) + - labs(x="", y="Samples", fill = cosmic_tag) + + geom_text(aes(label = label), position = position_stack(vjust = 0.5), color = "black", size = 3) + + coord_polar("y", start = 0) + facet_wrap(.~sample) + + labs(x = "", y = "Samples", fill = cosmic_tag) + scale_fill_manual(name = paste0(opt$signum, " most contributing\nsignatures\n(in each label/tissue)"), values = cosmic_colors[as.numeric(levels(factor(worklist$label)))]) + theme(axis.text = element_blank(), @@ -348,17 +367,17 @@ p8 <- plot_contribution_heatmap(fit_res$contribution, cluster_samples = TRUE, method = "complete") grid.arrange(p8) } - + # export relative contribution matrix if (!is.na(opt$sig_contrib_matrix)) { - output_table <- t(fit_res$contribution)/rowSums(t(fit_res$contribution)) + output_table <- t(fit_res$contribution) / rowSums(t(fit_res$contribution)) colnames(output_table) <- paste0("s", colnames(output_table)) if (length(levels(factor(levels_table$level))) > 1) { - output_table <- data.frame(sample=paste0(metadata_table[metadata_table$element_identifier==colnames(fit_res$contribution), - 3], "-", colnames(fit_res$contribution) ), + output_table <- data.frame(sample = paste0(metadata_table[metadata_table$element_identifier == colnames(fit_res$contribution), + 3], "-", colnames(fit_res$contribution)), output_table) } else { - output_table <- data.frame(sample=rownames(output_table), output_table) + output_table <- data.frame(sample = rownames(output_table), output_table) } write.table(output_table, file = opt$sig_contrib_matrix, sep = "\t", quote = F, row.names = F) } @@ -367,37 +386,37 @@ cos_sim_ori_rec <- cos_sim_matrix(pseudo_mut_mat, fit_res$reconstructed) # extract cosine similarities per sample between original and reconstructed cos_sim_ori_rec <- as.data.frame(diag(cos_sim_ori_rec)) - + # We can use ggplot to make a barplot of the cosine similarities between the original and # reconstructed mutational profile of each sample. This clearly shows how well each mutational # profile can be reconstructed with the COSMIC mutational signatures. Two identical profiles # have a cosine similarity of 1. The lower the cosine similarity between original and # reconstructed, the less well the original mutational profile can be reconstructed with # the COSMIC signatures. You could use, for example, cosine similarity of 0.95 as a cutoff. - + # Adjust data frame for plotting with gpplot - colnames(cos_sim_ori_rec) = "cos_sim" - cos_sim_ori_rec$sample = row.names(cos_sim_ori_rec) + colnames(cos_sim_ori_rec) <- "cos_sim" + cos_sim_ori_rec$sample <- row.names(cos_sim_ori_rec) # Make barplot - p9 <- ggplot(cos_sim_ori_rec, aes(y=cos_sim, x=sample)) + - geom_bar(stat="identity", fill = "skyblue4") + - coord_cartesian(ylim=c(0.8, 1)) + + p9 <- ggplot(cos_sim_ori_rec, aes(y = cos_sim, x = sample)) + + geom_bar(stat = "identity", fill = "skyblue4") + + coord_cartesian(ylim = c(0.8, 1)) + # coord_flip(ylim=c(0.8,1)) + ylab("Cosine similarity\n original VS reconstructed") + xlab("") + # Reverse order of the samples such that first is up # xlim(rev(levels(factor(cos_sim_ori_rec$sample)))) + theme_bw() + - theme(panel.grid.minor.y=element_blank(), - panel.grid.major.y=element_blank()) + + theme(panel.grid.minor.y = element_blank(), + panel.grid.major.y = element_blank()) + # Add cut.off line - geom_hline(aes(yintercept=.95)) - grid.arrange(p9, top = textGrob("Similarity between true and reconstructed profiles (with all Cosmic sig.)",gp=gpar(fontsize=12,font=3))) + geom_hline(aes(yintercept = .95)) + grid.arrange(p9, top = textGrob("Similarity between true and reconstructed profiles (with all Cosmic sig.)", gp = gpar(fontsize = 12, font = 3))) dev.off() } # Output RData file if (!is.null(opt$rdata)) { - save.image(file=opt$rdata) + save.image(file = opt$rdata) }
--- a/mutational_patterns.xml Thu Oct 22 23:29:28 2020 +0000 +++ b/mutational_patterns.xml Fri Jun 04 22:35:48 2021 +0000 @@ -1,4 +1,4 @@ -<tool id="mutational_patterns" name="Analyse Mutational Patterns/Signatures" version="2.0.0+galaxy13.1"> +<tool id="mutational_patterns" name="Analyse Mutational Patterns/Signatures" version="2.0.0+galaxy14"> <description>from genomic variations in vcf files</description> <requirements> <requirement type="package" version="2.0.0=r40_0">bioconductor-mutationalpatterns</requirement> @@ -6,19 +6,23 @@ <requirement type="package" version="0.2.20=r40h0357c0b_1002">r-rjson</requirement> <requirement type="package" version="0.21.0=r40h0357c0b_1004">r-nmf</requirement> <requirement type="package" version="2.3=r40h6115d3f_1003">r-gridextra</requirement> + <requirement type="package" version="1.4.3=r40_0">bioconductor-bsgenome.hsapiens.ucsc.hg19</requirement> <requirement type="package" version="1.4.3=r40_0">bioconductor-bsgenome.hsapiens.ucsc.hg38</requirement> - <requirement type="package" version="0.99.1=r40_4">bioconductor-bsgenome.hsapiens.1000genomes.hs37d5</requirement> - <requirement type="package" version="1.4.3=r40_0">bioconductor-bsgenome.hsapiens.ucsc.hg19</requirement> +<!-- <requirement type="package" version="1.3.1000=r40_4">bioconductor-bsgenome.hsapiens.ncbi.grch38</requirement> - <!-- install bioconda genomes - bioconductor-bsgenome.mmusculus.ucsc.mm9 - bioconductor-bsgenome.mmusculus.ucsc.mm10 --> + <requirement type="package" version="0.99.1=r40_4">bioconductor-bsgenome.hsapiens.1000genomes.hs37d5</requirement> +--> +<!-- +install more bioconda genomes +bioconductor-bsgenome.mmusculus.ucsc.mm9 +bioconductor-bsgenome.mmusculus.ucsc.mm10 +--> </requirements> <stdio> <exit_code range="1:" level="fatal" description="Tool exception" /> </stdio> - <command detect_errors="exit_code"><![CDATA[ + <command detect_errors="exit_code"><![CDATA[ #import json #import os Rscript $__tool_directory__/mutational_patterns.R @@ -63,8 +67,8 @@ <inputs> <param name="vcfs" type="data_collection" format="vcf" label="VCF file(s) collection" multiple="true"/> <param name="genome" type="select" label="Reference Genome"> - <option value="BSgenome.Hsapiens.1000genomes.hs37d5">BSgenome.Hsapiens.1000genomes.hs37d5</option> - <option value="BSgenome.Hsapiens.NCBI.GRCh38">BSgenome.Hsapiens.NCBI.GRCh38</option> + <!-- <option value="BSgenome.Hsapiens.1000genomes.hs37d5">BSgenome.Hsapiens.1000genomes.hs37d5</option> --> + <!-- <option value="BSgenome.Hsapiens.NCBI.GRCh38">BSgenome.Hsapiens.NCBI.GRCh38</option> --> <option value="BSgenome.Hsapiens.UCSC.hg19">BSgenome.Hsapiens.UCSC.hg19</option> <option value="BSgenome.Hsapiens.UCSC.hg38" selected="true">BSgenome.Hsapiens.UCSC.hg38</option> <!--<option value="BSgenome.Mmusculus.UCSC.mm10">BSgenome.Mmusculus.UCSC.mm10</option> @@ -280,7 +284,7 @@ * the absolute contribution of the n most contributing cosmic_ signatures in the samples mutational patterns (to be set by the user, between 2 and 30) * the relative contribution of the n most contributing cosmic_ signatures in the samples mutational patterns (to be set by the user, between 2 and 30) * a clustering of the samples with respect to the relative contribution of their cosmic_ signatures -* pie charts of the samples displaying for each sample the relative contribution of the n most contributing cosmic_ signatures in their mutational pattern +* pie charts of the samples displaying for each sample the relative contribution of the n most contributing cosmic_ signatures to their mutational pattern .. _cosmic: https://cancer.sanger.ac.uk/cosmic/signatures_v2.tt