Mercurial > repos > artbio > pathifier
comparison pathifier.R @ 0:fec313f5c889 draft
"planemo upload for repository https://github.com/ARTbio/tools-artbio/tree/master/tools/pathifier commit b94cfc7bf8df30aa8e9249b75ea31332ee2bada1"
author | artbio |
---|---|
date | Mon, 12 Apr 2021 09:55:24 +0000 |
parents | |
children | 0960bd1161fa |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:fec313f5c889 |
---|---|
1 ################################################################################################## | |
2 # Running PATHIFIER (Drier et al., 2013) | |
3 # Based on the work of Author: Miguel Angel Garcia-Campos - Github: https://github.com/AngelCampos | |
4 ################################################################################################## | |
5 | |
6 | |
7 options(show.error.messages = F, error = function() { | |
8 cat(geterrmessage(), file = stderr()); q("no", 1, F) | |
9 } | |
10 ) | |
11 # we need that to not crash galaxy with an UTF8 error on German LC settings. | |
12 loc <- Sys.setlocale("LC_MESSAGES", "en_US.UTF-8") | |
13 | |
14 library(pathifier) | |
15 library(optparse) | |
16 library(pheatmap) | |
17 library(scatterplot3d) | |
18 library(circlize) | |
19 | |
20 option_list <- list( | |
21 make_option( | |
22 "--exp", | |
23 type = "character", | |
24 help = "Expression matrix"), | |
25 make_option( | |
26 "--sep", | |
27 type = "character", | |
28 default = "\t", | |
29 help = "File separator [default : '%default']" | |
30 ), | |
31 make_option( | |
32 "--genes", | |
33 type = "character", | |
34 help = "Gene sets Pathways : gmt format (one pathway per line : Name, description, genes (one by column), tab separated)"), | |
35 make_option( | |
36 "--is_normal", | |
37 default = F, | |
38 type = "logical", | |
39 help = "Define normals cells in your data"), | |
40 make_option( | |
41 "--normals", | |
42 type = "character", | |
43 help = "A vector of sample status : 1 = Healthy, 0 = Tumor. Must be in the same order as in expression data"), | |
44 make_option( | |
45 "--logfile", | |
46 type = "character", | |
47 default = "log.txt", | |
48 help = "Log file name [default : '%default']" | |
49 ), | |
50 make_option( | |
51 "--max_stability", | |
52 type = "logical", | |
53 default = T, | |
54 help = "If true, throw away components leading to low stability of sampling noise [default : '%default']" | |
55 ), | |
56 make_option( | |
57 "--attempts", | |
58 type = "integer", | |
59 default = 10, | |
60 help = "Number of runs to determine stability. [default : '%default']" | |
61 ), | |
62 make_option( | |
63 "--min_std", | |
64 type = "character", | |
65 default = "0.4", | |
66 help = "Minimum of standard deviation to filter out low variable genes. | |
67 Use --min.std data, to use the minimum std of your data [default : '%default']" | |
68 ), | |
69 make_option( | |
70 "--min_exp", | |
71 type = "character", | |
72 default = "4", | |
73 help = "Minimum of gene expression to filter out low expressed genes. | |
74 Use --min.exp data, to use the minimum expression of your data [default : '%default']" | |
75 ), | |
76 make_option( | |
77 "--pds", | |
78 type = "character", | |
79 default = "PDS.tsv", | |
80 help = "Output PDS (Pathway deregulation score) of Pathifier in tabular file [default : '%default']" | |
81 ), | |
82 make_option( | |
83 "--heatmap_cluster_cells", | |
84 type = "logical", | |
85 default = TRUE, | |
86 help = "Cluster columns (cells) in the heatmap [default : '%default']" | |
87 ), | |
88 make_option( | |
89 "--heatmap_cluster_pathways", | |
90 type = "logical", | |
91 default = TRUE, | |
92 help = "Cluster rows (pathways) in the heatmap [default : '%default']" | |
93 ), | |
94 make_option( | |
95 "--heatmap_show_cell_labels", | |
96 type = "logical", | |
97 default = FALSE, | |
98 help = "Print column names (cells) on the heatmap [default : '%default']" | |
99 ), | |
100 make_option( | |
101 "--heatmap_show_pathway_labels", | |
102 type = "logical", | |
103 default = FALSE, | |
104 help = "Print row names (pathways) on the heatmap [default : '%default']" | |
105 ), | |
106 make_option( | |
107 "--plot", | |
108 type = "character", | |
109 default = "./plot.pdf", | |
110 help = "Pathifier visualization [default : '%default']" | |
111 ), | |
112 make_option( | |
113 "--rdata", | |
114 type = "character", | |
115 default = "./results.rdata", | |
116 help = "Pathifier object (S4) [default : '%default']")) | |
117 parser <- OptionParser(usage = "%prog [options] file", option_list = option_list) | |
118 args <- parse_args(parser) | |
119 if (args$sep == "tab") { | |
120 args$sep <- "\t" | |
121 } | |
122 | |
123 | |
124 # set seed for reproducibility | |
125 set.seed(123) | |
126 | |
127 # Load expression data for PATHIFIER | |
128 exp_matrix <- as.matrix(read.delim(file = args$exp, | |
129 as.is = T, | |
130 row.names = 1, | |
131 sep = args$sep, | |
132 check.names = F)) | |
133 | |
134 # Load Genesets annotation | |
135 gene_sets_file <- file(args$genes, open = "r") | |
136 gene_sets <- readLines(gene_sets_file) | |
137 close(gene_sets_file) | |
138 | |
139 # Generate a list that contains genes in genesets | |
140 gs <- strsplit(gene_sets, "\t") | |
141 names(gs) <- lapply(gs, function(x) x[1]) | |
142 gs <- lapply(gs, function(x) x[-c(1:2)]) | |
143 | |
144 # Generate a list that contains the names of the genesets used | |
145 pathwaynames <- names(gs) | |
146 | |
147 # Prepare data and parameters ################################################## | |
148 # Extract information from binary phenotypes. 1 = Normal, 0 = Tumor | |
149 if (args$is_normal == T) { | |
150 normals <- read.delim(file = args$normals, h = F) | |
151 normals <- as.logical(normals[, 2]) | |
152 n_exp_matrix <- exp_matrix[, normals] | |
153 } else n_exp_matrix <- exp_matrix | |
154 | |
155 # Calculate MIN_STD | |
156 rsd <- apply(n_exp_matrix, 1, sd) | |
157 min_std <- quantile(rsd, 0.25) | |
158 | |
159 # Calculate MIN_EXP | |
160 min_exp <- quantile(as.vector(as.matrix(exp_matrix)), | |
161 0.1) # Percentile 10 of data | |
162 | |
163 # Filter low value genes. At least 10% of samples with values over min_exp | |
164 # Set expression levels < MIN_EXP to MIN_EXP | |
165 over <- apply(exp_matrix, 1, function(x) x > min_exp) | |
166 g_over <- apply(over, 2, mean) | |
167 g_over <- names(g_over)[g_over > 0.1] | |
168 exp_matrix_filtered <- exp_matrix[g_over, ] | |
169 exp_matrix_filtered[exp_matrix_filtered < min_exp] <- min_exp | |
170 | |
171 # Set maximum 5000 genes with more variance | |
172 variable_genes <- names(sort(apply(exp_matrix_filtered, 1, var), decreasing = T))[1:5000] | |
173 variable_genes <- variable_genes[!is.na(variable_genes)] | |
174 exp_matrix_filtered <- exp_matrix_filtered[variable_genes, ] | |
175 allgenes <- as.vector(rownames(exp_matrix_filtered)) | |
176 | |
177 | |
178 if (args$min_std == "data") { | |
179 args$min_std <- min_std | |
180 } else args$min_std <- as.numeric(args$min_std) | |
181 | |
182 if (args$min_exp == "data") { | |
183 args$min_exp <- min_exp | |
184 } else args$min_exp <- as.numeric(args$min_exp) | |
185 | |
186 | |
187 # Open pdf | |
188 pdf(args$plot) | |
189 | |
190 # Construct continuous color scale | |
191 col_score_fun <- colorRamp2(c(0, 0.5, 1), c("#4575B4", "#FFFFBF", "#D73027")) | |
192 | |
193 # Run Pathifier | |
194 if (args$is_normal == T) { | |
195 pds <- quantify_pathways_deregulation(exp_matrix_filtered, | |
196 allgenes, | |
197 gs, | |
198 pathwaynames, | |
199 normals, | |
200 maximize_stability = args$max_stability, | |
201 attempts = args$attempts, | |
202 logfile = args$logfile, | |
203 min_std = args$min_std, | |
204 min_exp = args$min_exp) | |
205 for (i in pathwaynames) { | |
206 df <- data.frame(pds$curves[[i]][, 1:3], | |
207 normal = normals, | |
208 PDS = as.numeric(pds$scores[[i]]), | |
209 curve_order = as.vector(pds$curves_order[[i]])) | |
210 ordered <- df[df$curve_order, ] | |
211 | |
212 | |
213 layout(cbind(1:2, 1:2), heights = c(7, 1)) | |
214 sc3 <- scatterplot3d(ordered[, 1:3], | |
215 main = paste("Principal curve of", i), | |
216 box = F, pch = 19, type = "l") | |
217 sc3$points3d(ordered[, 1:3], box = F, pch = 19, | |
218 col = col_score_fun(ordered$PDS)) | |
219 | |
220 # Plot color scale legend | |
221 par(mar = c(5, 3, 0, 3)) | |
222 plot(seq(min(ordered$PDS), max(ordered$PDS), length = 100), rep(0, 100), pch = 15, | |
223 axes = TRUE, yaxt = "n", xlab = "Color scale of PDS", ylab = "", bty = "n", | |
224 col = col_score_fun(seq(min(ordered$PDS), max(ordered$PDS), length = 100))) | |
225 | |
226 | |
227 cols_status <- ifelse(ordered$normal, "blue", "red") | |
228 sc3 <- scatterplot3d(ordered[, 1:3], | |
229 main = paste("Principal curve of", i), | |
230 box = F, pch = "", type = "l") | |
231 sc3$points3d(ordered[, 1:3], box = F, | |
232 pch = ifelse(ordered$normal, 19, 8), | |
233 col = ifelse(ordered$normal, "blue", "red")) | |
234 legend("topright", pch = c(19, 8), yjust = 0, | |
235 legend = c("normal", "cancer"), | |
236 col = c("blue", "red"), cex = 1.1) | |
237 | |
238 ## annotation for heatmap | |
239 sample_status <- data.frame(Status = factor(ifelse(df$normal, "normal", "tumor"))) | |
240 rownames(sample_status) <- colnames(exp_matrix_filtered) | |
241 color_status_heatmap <- list(Status = c(normal = "blue", tumor = "red")) | |
242 } | |
243 } else{ | |
244 pds <- quantify_pathways_deregulation(exp_matrix_filtered, | |
245 allgenes, | |
246 gs, | |
247 pathwaynames, | |
248 maximize_stability = args$max_stability, | |
249 attempts = args$attempts, | |
250 logfile = args$logfile, | |
251 min_std = args$min_std, | |
252 min_exp = args$min_exp) | |
253 for (i in pathwaynames) { | |
254 df <- data.frame(pds$curves[[i]][, 1:3], | |
255 PDS = as.numeric(pds$scores[[i]]), | |
256 curve_order = as.vector(pds$curves_order[[i]])) | |
257 ordered <- df[df$curve_order, ] | |
258 | |
259 layout(cbind(1:2, 1:2), heights = c(7, 1)) | |
260 sc3 <- scatterplot3d(ordered[, 1:3], | |
261 main = paste("Principal curve of", i), | |
262 box = F, pch = 19, type = "l") | |
263 sc3$points3d(ordered[, 1:3], box = F, pch = 19, | |
264 col = col_score_fun(ordered$PDS)) | |
265 | |
266 # Plot color scale legend | |
267 par(mar = c(5, 3, 0, 3)) | |
268 plot(seq(min(ordered$PDS), max(ordered$PDS), length = 100), rep(0, 100), pch = 15, | |
269 axes = TRUE, yaxt = "n", xlab = "Color scale of PDS", ylab = "", bty = "n", | |
270 col = col_score_fun(seq(min(ordered$PDS), max(ordered$PDS), length = 100))) | |
271 | |
272 | |
273 ## annotation for heatmap (for the moment none for this situation) | |
274 sample_status <- NA | |
275 color_status_heatmap <- NA | |
276 } | |
277 } | |
278 | |
279 ## Create dataframe from Pathifier list and round score to 4 digits | |
280 pds_scores <- mapply(FUN = function(x) cbind(round(x, 4)), pds$scores) | |
281 dimnames(pds_scores) <- list(colnames(exp_matrix_filtered), names(pds$scores)) | |
282 | |
283 ## plot heatmap | |
284 if (ncol(pds_scores) > 1) { | |
285 pheatmap(t(pds_scores), | |
286 main = "Heatmap of Pathway Deregulation Score", # heat map title | |
287 cluster_rows = args$heatmap_cluster_pathways, # apply clustering method | |
288 cluster_cols = args$heatmap_cluster_cells, # apply clustering method | |
289 | |
290 #Additional Options | |
291 ## Color labeled columns | |
292 annotation_col = sample_status, | |
293 annotation_colors = color_status_heatmap, | |
294 show_rownames = args$heatmap_show_pathway_labels, | |
295 show_colnames = args$heatmap_show_cell_labels, | |
296 border_color = NA, | |
297 legend = TRUE) | |
298 } | |
299 dev.off() | |
300 | |
301 | |
302 ## write table | |
303 write.table(pds_scores, | |
304 args$pds, | |
305 row.names = T, | |
306 col.names = T, | |
307 quote = F, | |
308 sep = "\t") | |
309 | |
310 ## write S4 pathifier object | |
311 save(pds, file = args$rdata) |