Mercurial > repos > artbio > probecoverage
view probecoverage.r @ 5:2ec6529e555d draft
planemo upload for repository https://github.com/ARTbio/tools-artbio/tree/master/tools/probecoverage commit c249a0b083ab1c53744839e797b4b8856f5516f9
author | artbio |
---|---|
date | Sat, 02 Jun 2018 07:10:17 -0400 |
parents | daec4df60281 |
children | bea8435e1e79 |
line wrap: on
line source
## Setup R error handling to go to stderr options( show.error.messages=F, error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) warnings() library(optparse) library(ggplot2) library(reshape2) option_list <- list( make_option(c("-i", "--input"), type="character", help="Path to dataframe"), make_option(c("-t", "--title"), type="character", help="Main Title"), make_option("--xlab", type = "character", help="X-axis legend"), make_option("--ylab", type = "character", help="Y-axis legend"), make_option("--sample", type = "character", help="a space separated of sample labels"), make_option("--method", type = "character", help="bedtools or pysam"), make_option(c("-o", "--output"), type = "character", help="path to the pdf plot") ) parser <- OptionParser(usage = "%prog [options] file", option_list = option_list) args = parse_args(parser) samples = substr(args$sample, 2, nchar(args$sample)-2) samples = strsplit(samples, ", ") # data frames implementation Table <- read.delim(args$input, header=F) headers = c("chromosome", "start", "end", "id") for (i in seq(1, length(Table)-4)) { headers <- c(headers, samples[[1]][i]) colnames(Table) <- headers } ## function if (args$method == 'bedtools') { cumul <- function(x,y) sum(Table[,y]/(Table$end-Table$start) > x)/length(Table$chromosome) } else { cumul <- function(x,y) sum(Table[,y] > x)/length(Table$chromosome) } scaleFUN <- function(x) sprintf("%.3f", x) ## end of function ## let's do a dataframe before plotting if (args$method == 'bedtools') { maxdepth <- trunc(max(Table[,5:length(Table)]/(Table$end-Table$start))) + 20 } else { maxdepth <- trunc(max(Table[,5:length(Table)])) + 20 } graphpoints <- data.frame(1:maxdepth) i <- 5 for (colonne in colnames(Table)[5:length(colnames(Table))]) { graphpoints <- cbind(graphpoints, mapply(cumul, 1:maxdepth, rep(i, maxdepth))) i <- i + 1 } colnames(graphpoints) <- c("Depth", colnames(Table)[5:length(Table)]) maxfrac = max(graphpoints[,2:length(graphpoints)]) graphpoints <- melt(graphpoints, id.vars="Depth", variable.name="Samples", value.name="sample_value") ## GRAPHS pdf(file=args$output) ggplot(data=graphpoints, aes(x=Depth, y=sample_value, colour=Samples)) + geom_line(size=1) + scale_x_continuous(trans='log2', breaks = 2^(seq(0,log(maxdepth, 2)))) + scale_y_continuous(breaks = seq(0, maxfrac, by=maxfrac/10), labels=scaleFUN) + labs(x=args$xlab, y=args$ylab, title=args$title) + theme(legend.position="top", legend.title=element_blank(), legend.text=element_text(colour="blue", size=7)) ## facet_wrap(~Samples, ncol=2) devname=dev.off()