Mercurial > repos > artbio > repenrich
comparison edger-repenrich.xml @ 1:51b4590a972d draft
planemo upload for repository https://github.com/ARTbio/tools-artbio/tree/master/tools/repenrich commit 98f4b00d71cbc2dd15fc633a6cc3246235308e46
author | artbio |
---|---|
date | Mon, 18 Sep 2017 17:22:07 -0400 |
parents | f6f0f1e5e940 |
children | 15e3e29f310e |
comparison
equal
deleted
inserted
replaced
0:f6f0f1e5e940 | 1:51b4590a972d |
---|---|
1 <tool id="edger-repenrich" name="edgeR-repenrich" version="1.4.0"> | 1 <tool id="edger-repenrich" name="edgeR-repenrich" version="1.4.1"> |
2 <description>Determines differentially expressed features from RepEnrich counts</description> | 2 <description>Determines differentially expressed features from RepEnrich counts</description> |
3 <requirements> | 3 <requirements> |
4 <requirement type="package" version="3.16.5">bioconductor-edger</requirement> | 4 <requirement type="package" version="3.16.5">bioconductor-edger</requirement> |
5 <requirement type="package" version="3.30.13">bioconductor-limma</requirement> | 5 <requirement type="package" version="3.30.13">bioconductor-limma</requirement> |
6 <requirement type="package" version="1.20.0">r-getopt</requirement> | 6 <requirement type="package" version="1.20.0">r-getopt</requirement> |
128 <![CDATA[ | 128 <![CDATA[ |
129 .. class:: infomark | 129 .. class:: infomark |
130 | 130 |
131 **What it does** | 131 **What it does** |
132 | 132 |
133 Estimate Distance between samples (MDS) and Biological Coefficient Variation (BCV) in count data from high-throughput sequencing assays and test for differential expression using edgeR_. | 133 Estimate Distance between samples (MDS) and Biological Coefficient Variation (BCV) in count |
134 data from high-throughput sequencing assays and test for differential expression using edgeR_. | |
134 | 135 |
135 **Inputs** | 136 **Inputs** |
136 | 137 |
137 edger-repenrich takes count tables generated by repenrich as input. Count tables must be generated for each sample individually. Here, edgeR_ is handling a single factor (genotype, age, treatment, etc) that effect your experiment. This factor has two levels/states (for instance, "wild-type" and "mutant". | 138 edger-repenrich takes count tables generated by repenrich as inputs. A repenrich count table looks |
139 like: | |
140 | |
141 ============== ========== ========== ========== | |
142 LSU-rRNA_Dme rRNA rRNA 3659329 | |
143 -------------- ---------- ---------- ---------- | |
144 FW3_DM LINE Jockey 831 | |
145 -------------- ---------- ---------- ---------- | |
146 DMTOM1_LTR LTR Gypsy 1004 | |
147 -------------- ---------- ---------- ---------- | |
148 R1_DM LINE R1 7343 | |
149 -------------- ---------- ---------- ---------- | |
150 TAHRE LINE Jockey 4560 | |
151 -------------- ---------- ---------- ---------- | |
152 G4_DM LINE Jockey 3668 | |
153 -------------- ---------- ---------- ---------- | |
154 BS LINE Jockey 7296 | |
155 -------------- ---------- ---------- ---------- | |
156 Stalker2_I-int LTR Gypsy 12252 | |
157 -------------- ---------- ---------- ---------- | |
158 Stalker3_LTR LTR Gypsy 593 | |
159 -------------- ---------- ---------- ---------- | |
160 TABOR_I-int LTR Gypsy 3947 | |
161 -------------- ---------- ---------- ---------- | |
162 G7_DM LINE Jockey 162 | |
163 -------------- ---------- ---------- ---------- | |
164 BEL_I-int LTR Pao 23757 | |
165 -------------- ---------- ---------- ---------- | |
166 Gypsy6_I-int LTR Gypsy 7489 | |
167 ============== ========== ========== ========== | |
168 | |
169 Count tables must be | |
170 generated for each sample individually. Here, edgeR_ is handling a single factor | |
171 (genotype, age, treatment, etc) that effect your experiment. This factor has two | |
172 levels/states (for instance, "wild-type" and "mutant". | |
138 You need to select appropriate count table from your history for each factor level. | 173 You need to select appropriate count table from your history for each factor level. |
139 | 174 |
140 The following table gives some examples of factors and their levels: | 175 The following table gives some examples of factors and their levels: |
141 | 176 |
142 ========= ============== =============== | 177 ========= ============== =============== |
149 TimePoint Day4 Day1 | 184 TimePoint Day4 Day1 |
150 --------- -------------- --------------- | 185 --------- -------------- --------------- |
151 Gender Female Male | 186 Gender Female Male |
152 ========= ============== =============== | 187 ========= ============== =============== |
153 | 188 |
154 *Note*: Output log2 fold changes are based on primary factor level 1 vs. factor level2. Here the order of factor levels is important. For example, for the factor 'Treatment' given in above table, DESeq2 computes fold changes of 'Treated' samples against 'Untreated', i.e. the values correspond to up or down regulations of genes in Treated samples. | 189 *Note*: Output log2 fold changes are based on primary factor level 1 vs. factor level2. |
190 Here the order of factor levels is important. For example, for the factor 'Treatment' given | |
191 in above table, edgeR computes fold changes of 'Treated' samples against 'Untreated', | |
192 i.e. the values correspond to up or down regulations of genes in Treated samples. | |
193 | |
194 *Number of aligned reads*: | |
195 | |
196 A file containing the number of reads aligned to transposons by repenrich must me provided | |
197 to edger-repenrich. This file is a single-column tabular file containing a single value. | |
155 | 198 |
156 **Output** | 199 **Output** |
157 | 200 |
158 edgeR_ generates a tabular file containing the different columns and results visualized in a PDF: | 201 edgeR_ generates a tabular file containing the different columns and results visualized in a PDF: |
159 | 202 |