Mercurial > repos > artbio > repenrich
view edger-repenrich.xml @ 14:bf866bedd4b4 draft
planemo upload for repository https://github.com/ARTbio/tools-artbio/tree/main/tools/repenrich commit 205141a3f695f202d5c3e01e6ab3b2b869fe62b5
author | artbio |
---|---|
date | Sat, 20 Apr 2024 12:13:52 +0000 |
parents | 530626b0757c |
children |
line wrap: on
line source
<tool id="edger-repenrich" name="edgeR-repenrich" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="@PROFILE@"> <description>Determines differentially expressed features from RepEnrich counts</description> <macros> <import>macros.xml</import> </macros> <expand macro="edgeR_requirements"/> <stdio> <regex match="Execution halted" source="both" level="fatal" description="Execution halted." /> <regex match="Error in" source="both" level="fatal" description="An undefined error occurred, please check your input carefully and contact your administrator." /> <regex match="Fatal error" source="both" level="fatal" description="An undefined error occurred, please check your input carefully and contact your administrator." /> </stdio> <version_command> <![CDATA[ echo $(R --version | grep version | grep -v GNU)", edgeR version" $(R --vanilla --slave -e "library(edgeR) && cat(sessionInfo()\$otherPkgs\$edgeR\$Version)" 2> /dev/null | grep -v -i "WARNING: ") ]]> </version_command> <command> <![CDATA[ #import json Rscript '${__tool_directory__}/edgeR_repenrich.R' --factorName '$factorName' --levelNameA '$factorLevel_A' #set $factorlevelsA = list() #for $file in $countsFiles_A: $factorlevelsA.append(str($file)) #end for $factorlevelsA.reverse() --levelAfiles '#echo json.dumps(factorlevelsA)#' --levelNameB '$factorLevel_B' #set $factorlevelsB = list() #for $file in $countsFiles_B: $factorlevelsB.append(str($file)) #end for $factorlevelsB.reverse() --levelBfiles '#echo json.dumps(factorlevelsB)#' -o 'edger_out' -p '$plots' #if $normCounts: -n '$counts_out' #end if -o '$edger_out' ]]> </command> <inputs> <param name="factorName" type="text" value="FactorName" label="Specify a factor name, e.g. genotype or age or drug_x" help="Only letters, numbers and underscores will be retained in this field"> <sanitizer> <valid initial="string.letters,string.digits"><add value="_" /></valid> </sanitizer> </param> <param name="factorLevel_A" type="text" value="FactorLevel1" label="Specify a factor level, typical values could be 'mutant' or 'Drug_X'" help="Only letters, numbers and underscores will be retained in this field"> <sanitizer> <valid initial="string.letters,string.digits"><add value="_" /></valid> </sanitizer> </param> <param name="countsFiles_A" type="data" format="tabular" multiple="true" label="Counts file(s)" help="Count files must have been generated by repenrich" /> <param name="factorLevel_B" type="text" value="FactorLevel2" label="Specify a factor level, typical values could be 'wildtype' or 'control'" help="Only letters, numbers and underscores will be retained in this field"> <sanitizer> <valid initial="string.letters,string.digits"><add value="_" /></valid> </sanitizer> </param> <param name="countsFiles_B" type="data" format="tabular" multiple="true" label="Counts file(s)" help="Count files must have been generated by repenrich tool" /> <param name="normCounts" type="boolean" truevalue="1" falsevalue="0" checked="false" label="Output normalized counts table" /> </inputs> <outputs> <data format="tabular" name="edger_out" label="edgeR: ${factorLevel_A} compared to ${factorLevel_B}"> <actions> <action name="column_names" type="metadata" default="Tag,log2(FC),FDR,Class,Type" /> </actions> </data> <data format="pdf" name="plots" label="edgeR plots" /> <data format="tabular" name="counts_out" label="Normalized counts file"> <filter>normCounts == True</filter> </data> </outputs> <tests> <test expect_num_outputs="3"> <param name="factorName" value="Genotype"/> <param name="factorLevel_A" value="Mutant"/> <param name="countsFiles_A" value="355_fraction_counts.tab,356_fraction_counts.tab"/> <param name="factorLevel_B" value="Wildtype"/> <param name="countsFiles_B" value="353_fraction_counts.tab,354_fraction_counts.tab"/> <param name="normCounts" value="True"/> <output name="counts_out" file="Normalized_counts_file.tab"/> <output name="plots" file="edgeR_plots.pdf"/> <output name="edger_out" file="edgeR_result_file.tab"/> </test> </tests> <help> <![CDATA[ .. class:: infomark **What it does** Estimate Distance between samples (MDS) and Biological Coefficient Variation (BCV) in count data from high-throughput sequencing assays and test for differential expression using edgeR_. **Inputs** edger-repenrich takes count tables generated by repenrich as inputs. A repenrich count table looks like: ============== ========== ========== ========== LSU-rRNA_Dme rRNA rRNA 3659329 -------------- ---------- ---------- ---------- FW3_DM LINE Jockey 831 -------------- ---------- ---------- ---------- DMTOM1_LTR LTR Gypsy 1004 -------------- ---------- ---------- ---------- R1_DM LINE R1 7343 -------------- ---------- ---------- ---------- TAHRE LINE Jockey 4560 -------------- ---------- ---------- ---------- G4_DM LINE Jockey 3668 -------------- ---------- ---------- ---------- BS LINE Jockey 7296 -------------- ---------- ---------- ---------- Stalker2_I-int LTR Gypsy 12252 -------------- ---------- ---------- ---------- Stalker3_LTR LTR Gypsy 593 -------------- ---------- ---------- ---------- TABOR_I-int LTR Gypsy 3947 -------------- ---------- ---------- ---------- G7_DM LINE Jockey 162 -------------- ---------- ---------- ---------- BEL_I-int LTR Pao 23757 -------------- ---------- ---------- ---------- Gypsy6_I-int LTR Gypsy 7489 ============== ========== ========== ========== Count tables must be generated for each sample individually. Here, edgeR_ is handling a single factor (genotype, age, treatment, etc) that effect your experiment. This factor has two levels/states (for instance, "wild-type" and "mutant". You need to select appropriate count table from your history for each factor level. The following table gives some examples of factors and their levels: ========= ============== =============== Factor Factorlevel1 Factorlevel2 --------- -------------- --------------- Treatment Treated Untreated --------- -------------- --------------- Genotype Knockdown Wildtype --------- -------------- --------------- TimePoint Day4 Day1 --------- -------------- --------------- Gender Female Male ========= ============== =============== *Note*: Output log2 fold changes are based on primary factor level 1 vs. factor level2. Here the order of factor levels is important. For example, for the factor 'Treatment' given in above table, edgeR computes fold changes of 'Treated' samples against 'Untreated', i.e. the values correspond to up or down regulations of genes in Treated samples. **Output** edgeR_ generates a tabular file containing the different columns and results visualized in a PDF: ====== ============================================================================= Column Description ------ ----------------------------------------------------------------------------- 1 Tag (transposon element ID) 2 the logarithm (to basis 2) of the fold change (See the note in inputs section) 3 p value adjusted for multiple testing with the Benjamini-Hochberg procedure which controls false discovery rate (FDR) 4 Class the transposon belongs to 5 Type the transposon belongs to ====== ============================================================================= .. _edgeR: http://www.bioconductor.org/packages/release/bioc/html/edgeR.html ]]> **Note**: This edgeR_ wrapper was adapted from code available at https://github.com/nskvir/RepEnrich </help> <citations> <citation type="doi">10.1093/bioinformatics/btp616</citation> </citations> </tool>