Mercurial > repos > artbio > small_read_size_histograms
comparison smRtools.py @ 0:234b83159ea8 draft
planemo upload for repository https://github.com/ARTbio/tools-artbio/tree/master/tools/small_read_size_histograms commit ab983b2e57321e8913bd4d5f8fc89c3223c69869
author | artbio |
---|---|
date | Tue, 11 Jul 2017 11:44:36 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:234b83159ea8 |
---|---|
1 #!/usr/bin/python | |
2 # version 1 7-5-2012 unification of the SmRNAwindow class | |
3 | |
4 import sys, subprocess | |
5 from collections import defaultdict | |
6 from numpy import mean, median, std | |
7 ##Disable scipy import temporarily, as no working scipy on toolshed. | |
8 ##from scipy import stats | |
9 | |
10 def get_fasta (index="/home/galaxy/galaxy-dist/bowtie/5.37_Dmel/5.37_Dmel"): | |
11 '''This function will return a dictionary containing fasta identifiers as keys and the | |
12 sequence as values. Index must be the path to a fasta file.''' | |
13 p = subprocess.Popen(args=["bowtie-inspect","-a", "0", index], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) # bowtie-inspect outputs sequences on single lines | |
14 outputlines = p.stdout.readlines() | |
15 p.wait() | |
16 item_dic = {} | |
17 for line in outputlines: | |
18 if (line[0] == ">"): | |
19 try: | |
20 item_dic[current_item] = "".join(stringlist) # to dump the sequence of the previous item - try because of the keyerror of the first item | |
21 except: pass | |
22 current_item = line[1:].rstrip().split()[0] #take the first word before space because bowtie splits headers ! | |
23 item_dic[current_item] = "" | |
24 stringlist=[] | |
25 else: | |
26 stringlist.append(line.rstrip() ) | |
27 item_dic[current_item] = "".join(stringlist) # for the last item | |
28 return item_dic | |
29 | |
30 def get_fasta_headers (index): | |
31 p = subprocess.Popen(args=["bowtie-inspect","-n", index], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) # bowtie-inspect outputs sequences on single lines | |
32 outputlines = p.stdout.readlines() | |
33 p.wait() | |
34 item_dic = {} | |
35 for line in outputlines: | |
36 header = line.rstrip().split()[0] #take the first word before space because bowtie splits headers ! | |
37 item_dic[header] = 1 | |
38 return item_dic | |
39 | |
40 | |
41 def get_file_sample (file, numberoflines): | |
42 '''import random to use this function''' | |
43 F=open(file) | |
44 fullfile = F.read().splitlines() | |
45 F.close() | |
46 if len(fullfile) < numberoflines: | |
47 return "sample size exceeds file size" | |
48 return random.sample(fullfile, numberoflines) | |
49 | |
50 def get_fasta_from_history (file): | |
51 F = open (file, "r") | |
52 item_dic = {} | |
53 for line in F: | |
54 if (line[0] == ">"): | |
55 try: | |
56 item_dic[current_item] = "".join(stringlist) # to dump the sequence of the previous item - try because of the keyerror of the first item | |
57 except: pass | |
58 current_item = line[1:-1].split()[0] #take the first word before space because bowtie splits headers ! | |
59 item_dic[current_item] = "" | |
60 stringlist=[] | |
61 else: | |
62 stringlist.append(line[:-1]) | |
63 item_dic[current_item] = "".join(stringlist) # for the last item | |
64 return item_dic | |
65 | |
66 def antipara (sequence): | |
67 antidict = {"A":"T", "T":"A", "G":"C", "C":"G", "N":"N"} | |
68 revseq = sequence[::-1] | |
69 return "".join([antidict[i] for i in revseq]) | |
70 | |
71 def RNAtranslate (sequence): | |
72 return "".join([i if i in "AGCN" else "U" for i in sequence]) | |
73 def DNAtranslate (sequence): | |
74 return "".join([i if i in "AGCN" else "T" for i in sequence]) | |
75 | |
76 def RNAfold (sequence_list): | |
77 thestring= "\n".join(sequence_list) | |
78 p = subprocess.Popen(args=["RNAfold","--noPS"], stdin= subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) | |
79 output=p.communicate(thestring)[0] | |
80 p.wait() | |
81 output=output.split("\n") | |
82 if not output[-1]: output = output[:-1] # nasty patch to remove last empty line | |
83 buffer=[] | |
84 for line in output: | |
85 if line[0] in ["N","A","T","U","G","C"]: | |
86 buffer.append(DNAtranslate(line)) | |
87 if line[0] in ["(",".",")"]: | |
88 fields=line.split("(") | |
89 energy= fields[-1] | |
90 energy = energy[:-1] # remove the ) parenthesis | |
91 energy=float(energy) | |
92 buffer.append(str(energy)) | |
93 return dict(zip(buffer[::2], buffer[1::2])) | |
94 | |
95 def extractsubinstance (start, end, instance): | |
96 ''' Testing whether this can be an function external to the class to save memory''' | |
97 subinstance = SmRNAwindow (instance.gene, instance.sequence[start-1:end], start) | |
98 subinstance.gene = "%s %s %s" % (subinstance.gene, subinstance.windowoffset, subinstance.windowoffset + subinstance.size - 1) | |
99 upcoordinate = [i for i in range(start,end+1) if instance.readDict.has_key(i) ] | |
100 downcoordinate = [-i for i in range(start,end+1) if instance.readDict.has_key(-i) ] | |
101 for i in upcoordinate: | |
102 subinstance.readDict[i]=instance.readDict[i] | |
103 for i in downcoordinate: | |
104 subinstance.readDict[i]=instance.readDict[i] | |
105 return subinstance | |
106 | |
107 class HandleSmRNAwindows: | |
108 def __init__(self, alignmentFile="~", alignmentFileFormat="tabular", genomeRefFile="~", genomeRefFormat="bowtieIndex", biosample="undetermined", size_inf=None, size_sup=1000, norm=1.0): | |
109 self.biosample = biosample | |
110 self.alignmentFile = alignmentFile | |
111 self.alignmentFileFormat = alignmentFileFormat # can be "tabular" or "sam" | |
112 self.genomeRefFile = genomeRefFile | |
113 self.genomeRefFormat = genomeRefFormat # can be "bowtieIndex" or "fastaSource" | |
114 self.alignedReads = 0 | |
115 self.instanceDict = {} | |
116 self.size_inf=size_inf | |
117 self.size_sup=size_sup | |
118 self.norm=norm | |
119 if genomeRefFormat == "bowtieIndex": | |
120 self.itemDict = get_fasta (genomeRefFile) | |
121 elif genomeRefFormat == "fastaSource": | |
122 self.itemDict = get_fasta_from_history (genomeRefFile) | |
123 for item in self.itemDict: | |
124 self.instanceDict[item] = SmRNAwindow(item, sequence=self.itemDict[item], windowoffset=1, biosample=self.biosample, norm=self.norm) # create as many instances as there is items | |
125 self.readfile() | |
126 | |
127 def readfile (self) : | |
128 if self.alignmentFileFormat == "tabular": | |
129 F = open (self.alignmentFile, "r") | |
130 for line in F: | |
131 fields = line.split() | |
132 polarity = fields[1] | |
133 gene = fields[2] | |
134 offset = int(fields[3]) | |
135 size = len (fields[4]) | |
136 if self.size_inf: | |
137 if (size>=self.size_inf and size<= self.size_sup): | |
138 self.instanceDict[gene].addread (polarity, offset+1, size) # to correct to 1-based coordinates of SmRNAwindow | |
139 self.alignedReads += 1 | |
140 else: | |
141 self.instanceDict[gene].addread (polarity, offset+1, size) # to correct to 1-based coordinates of SmRNAwindow | |
142 self.alignedReads += 1 | |
143 F.close() | |
144 return self.instanceDict | |
145 elif self.alignmentFileFormat == "bam" or self.alignmentFileFormat == "sam": | |
146 import pysam | |
147 samfile = pysam.Samfile(self.alignmentFile) | |
148 for read in samfile: | |
149 if read.tid == -1: | |
150 continue # filter out unaligned reads | |
151 if read.is_reverse: | |
152 polarity="-" | |
153 else: | |
154 polarity="+" | |
155 gene = samfile.getrname(read.tid) | |
156 offset = read.pos | |
157 size = read.qlen | |
158 if self.size_inf: | |
159 if (size>=self.size_inf and size<= self.size_sup): | |
160 self.instanceDict[gene].addread (polarity, offset+1, size) # to correct to 1-based coordinates of SmRNAwindow | |
161 self.alignedReads += 1 | |
162 else: | |
163 self.instanceDict[gene].addread (polarity, offset+1, size) # to correct to 1-based coordinates of SmRNAwindow | |
164 self.alignedReads += 1 | |
165 return self.instanceDict | |
166 | |
167 def size_histogram (self): # in HandleSmRNAwindows | |
168 '''refactored on 7-9-2014 to debug size_histogram tool''' | |
169 size_dict={} | |
170 size_dict['F']= defaultdict (float) | |
171 size_dict['R']= defaultdict (float) | |
172 size_dict['both'] = defaultdict (float) | |
173 for item in self.instanceDict: | |
174 buffer_dict = self.instanceDict[item].size_histogram() | |
175 for polarity in ["F", "R"]: | |
176 for size in buffer_dict[polarity]: | |
177 size_dict[polarity][size] += buffer_dict[polarity][size] | |
178 for size in buffer_dict["both"]: | |
179 size_dict["both"][size] += buffer_dict["F"][size] - buffer_dict["R"][size] | |
180 return size_dict | |
181 | |
182 def CountFeatures (self, GFF3="path/to/file"): | |
183 featureDict = defaultdict(int) | |
184 F = open (GFF3, "r") | |
185 for line in F: | |
186 if line[0] == "#": continue | |
187 fields = line[:-1].split() | |
188 chrom, feature, leftcoord, rightcoord, polarity = fields[0], fields[2], fields[3], fields[4], fields[6] | |
189 featureDict[feature] += self.instanceDict[chrom].readcount(upstream_coord=int(leftcoord), downstream_coord=int(rightcoord), polarity="both", method="destructive") | |
190 F.close() | |
191 return featureDict | |
192 | |
193 class SmRNAwindow: | |
194 | |
195 def __init__(self, gene, sequence="ATGC", windowoffset=1, biosample="Undetermined", norm=1.0): | |
196 self.biosample = biosample | |
197 self.sequence = sequence | |
198 self.gene = gene | |
199 self.windowoffset = windowoffset | |
200 self.size = len(sequence) | |
201 self.readDict = defaultdict(list) # with a {+/-offset:[size1, size2, ...], ...} | |
202 self.matchedreadsUp = 0 | |
203 self.matchedreadsDown = 0 | |
204 self.norm=norm | |
205 | |
206 def addread (self, polarity, offset, size): | |
207 '''ATTENTION ATTENTION ATTENTION''' | |
208 ''' We removed the conversion from 0 to 1 based offset, as we do this now during readparsing.''' | |
209 if polarity == "+": | |
210 self.readDict[offset].append(size) | |
211 self.matchedreadsUp += 1 | |
212 else: | |
213 self.readDict[-(offset + size -1)].append(size) | |
214 self.matchedreadsDown += 1 | |
215 return | |
216 | |
217 def barycenter (self, upstream_coord=None, downstream_coord=None): | |
218 '''refactored 24-12-2013 to save memory and introduce offset filtering see readcount method for further discussion on that | |
219 In this version, attempt to replace the dictionary structure by a list of tupple to save memory too''' | |
220 upstream_coord = upstream_coord or self.windowoffset | |
221 downstream_coord = downstream_coord or self.windowoffset+self.size-1 | |
222 window_size = downstream_coord - upstream_coord +1 | |
223 def weigthAverage (TuppleList): | |
224 weightSum = 0 | |
225 PonderWeightSum = 0 | |
226 for tuple in TuppleList: | |
227 PonderWeightSum += tuple[0] * tuple[1] | |
228 weightSum += tuple[1] | |
229 if weightSum > 0: | |
230 return PonderWeightSum / float(weightSum) | |
231 else: | |
232 return 0 | |
233 forwardTuppleList = [(k, len(self.readDict[k])) for k in self.readDict.keys() if (k > 0 and abs(k) >= upstream_coord and abs(k) <= downstream_coord)] # both forward and in the proper offset window | |
234 reverseTuppleList = [(-k, len(self.readDict[k])) for k in self.readDict.keys() if (k < 0 and abs(k) >= upstream_coord and abs(k) <= downstream_coord)] # both reverse and in the proper offset window | |
235 Fbarycenter = (weigthAverage (forwardTuppleList) - upstream_coord) / window_size | |
236 Rbarycenter = (weigthAverage (reverseTuppleList) - upstream_coord) / window_size | |
237 return Fbarycenter, Rbarycenter | |
238 | |
239 def correlation_mapper (self, reference, window_size): | |
240 '''to map correlation with a sliding window 26-2-2013''' | |
241 from scipy import stats | |
242 | |
243 if window_size > self.size: | |
244 return [] | |
245 F=open(reference, "r") | |
246 reference_forward = [] | |
247 reference_reverse = [] | |
248 for line in F: | |
249 fields=line.split() | |
250 reference_forward.append(int(float(fields[1]))) | |
251 reference_reverse.append(int(float(fields[2]))) | |
252 F.close() | |
253 local_object_forward=[] | |
254 local_object_reverse=[] | |
255 ## Dict to list for the local object | |
256 for i in range(1, self.size+1): | |
257 local_object_forward.append(len(self.readDict[i])) | |
258 local_object_reverse.append(len(self.readDict[-i])) | |
259 ## start compiling results by slides | |
260 results=[] | |
261 for coordinate in range(self.size - window_size): | |
262 local_forward=local_object_forward[coordinate:coordinate + window_size] | |
263 local_reverse=local_object_reverse[coordinate:coordinate + window_size] | |
264 if sum(local_forward) == 0 or sum(local_reverse) == 0: | |
265 continue | |
266 try: | |
267 reference_to_local_cor_forward = stats.spearmanr(local_forward, reference_forward) | |
268 reference_to_local_cor_reverse = stats.spearmanr(local_reverse, reference_reverse) | |
269 if (reference_to_local_cor_forward[0] > 0.2 or reference_to_local_cor_reverse[0]>0.2): | |
270 results.append([coordinate+1, reference_to_local_cor_forward[0], reference_to_local_cor_reverse[0]]) | |
271 except: | |
272 pass | |
273 return results | |
274 | |
275 def readcount (self, size_inf=0, size_sup=1000, upstream_coord=None, downstream_coord=None, polarity="both", method="conservative"): | |
276 '''refactored 24-12-2013 to save memory and introduce offset filtering | |
277 take a look at the defaut parameters that cannot be defined relatively to the instance are they are defined before instanciation | |
278 the trick is to pass None and then test | |
279 polarity parameter can take "both", "forward" or "reverse" as value''' | |
280 upstream_coord = upstream_coord or self.windowoffset | |
281 downstream_coord = downstream_coord or self.windowoffset+self.size-1 | |
282 if upstream_coord == 1 and downstream_coord == self.windowoffset+self.size-1 and polarity == "both": | |
283 return self.matchedreadsUp + self.matchedreadsDown | |
284 if upstream_coord == 1 and downstream_coord == self.windowoffset+self.size-1 and polarity == "forward": | |
285 return self.matchedreadsUp | |
286 if upstream_coord == 1 and downstream_coord == self.windowoffset+self.size-1 and polarity == "reverse": | |
287 return self.matchedreadsDown | |
288 n=0 | |
289 if polarity == "both": | |
290 for offset in xrange(upstream_coord, downstream_coord+1): | |
291 if self.readDict.has_key(offset): | |
292 for read in self.readDict[offset]: | |
293 if (read>=size_inf and read<= size_sup): | |
294 n += 1 | |
295 if method != "conservative": | |
296 del self.readDict[offset] ## Carefull ! precludes re-use on the self.readDict dictionary !!!!!! TEST | |
297 if self.readDict.has_key(-offset): | |
298 for read in self.readDict[-offset]: | |
299 if (read>=size_inf and read<= size_sup): | |
300 n += 1 | |
301 if method != "conservative": | |
302 del self.readDict[-offset] | |
303 return n | |
304 elif polarity == "forward": | |
305 for offset in xrange(upstream_coord, downstream_coord+1): | |
306 if self.readDict.has_key(offset): | |
307 for read in self.readDict[offset]: | |
308 if (read>=size_inf and read<= size_sup): | |
309 n += 1 | |
310 return n | |
311 elif polarity == "reverse": | |
312 for offset in xrange(upstream_coord, downstream_coord+1): | |
313 if self.readDict.has_key(-offset): | |
314 for read in self.readDict[-offset]: | |
315 if (read>=size_inf and read<= size_sup): | |
316 n += 1 | |
317 return n | |
318 | |
319 def readsizes (self): | |
320 '''return a dictionary of number of reads by size (the keys)''' | |
321 dicsize = {} | |
322 for offset in self.readDict: | |
323 for size in self.readDict[offset]: | |
324 dicsize[size] = dicsize.get(size, 0) + 1 | |
325 for offset in range (min(dicsize.keys()), max(dicsize.keys())+1): | |
326 dicsize[size] = dicsize.get(size, 0) # to fill offsets with null values | |
327 return dicsize | |
328 | |
329 | |
330 def size_histogram(self, minquery=None, maxquery=None): # in SmRNAwindow | |
331 '''refactored on 7-9-2014 to debug size_histogram tool''' | |
332 norm=self.norm | |
333 size_dict={} | |
334 size_dict['F']= defaultdict (float) | |
335 size_dict['R']= defaultdict (float) | |
336 size_dict['both']= defaultdict (float) | |
337 for offset in self.readDict: | |
338 for size in self.readDict[offset]: | |
339 if offset < 0: | |
340 size_dict['R'][size] = size_dict['R'][size] - 1*norm | |
341 else: | |
342 size_dict['F'][size] = size_dict['F'][size] + 1*norm | |
343 ## patch to avoid missing graphs when parsed by R-lattice. 27-08-2014. Test and validate ! | |
344 if not (size_dict['F']) and (not size_dict['R']): | |
345 size_dict['F'][21] = 0 | |
346 size_dict['R'][21] = 0 | |
347 ## | |
348 allSizeKeys = list (set (size_dict['F'].keys() + size_dict['R'].keys() ) ) | |
349 for size in allSizeKeys: | |
350 size_dict['both'][size] = size_dict['F'][size] - size_dict['R'][size] | |
351 if minquery: | |
352 for polarity in size_dict.keys(): | |
353 for size in xrange(minquery, maxquery+1): | |
354 if not size in size_dict[polarity].keys(): | |
355 size_dict[polarity][size]=0 | |
356 return size_dict | |
357 | |
358 def statsizes (self, upstream_coord=None, downstream_coord=None): | |
359 ''' migration to memory saving by specifying possible subcoordinates | |
360 see the readcount method for further discussion''' | |
361 upstream_coord = upstream_coord or self.windowoffset | |
362 downstream_coord = downstream_coord or self.windowoffset+self.size-1 | |
363 L = [] | |
364 for offset in self.readDict: | |
365 if (abs(offset) < upstream_coord or abs(offset) > downstream_coord): continue | |
366 for size in self.readDict[offset]: | |
367 L.append(size) | |
368 meansize = mean(L) | |
369 stdv = std(L) | |
370 mediansize = median(L) | |
371 return meansize, mediansize, stdv | |
372 | |
373 def foldEnergy (self, upstream_coord=None, downstream_coord=None): | |
374 ''' migration to memory saving by specifying possible subcoordinates | |
375 see the readcount method for further discussion''' | |
376 upstream_coord = upstream_coord or self.windowoffset | |
377 downstream_coord = downstream_coord or self.windowoffset+self.size-1 | |
378 Energy = RNAfold ([self.sequence[upstream_coord-1:downstream_coord] ]) | |
379 return float(Energy[self.sequence[upstream_coord-1:downstream_coord]]) | |
380 | |
381 def Ufreq (self, size_scope, upstream_coord=None, downstream_coord=None): | |
382 ''' migration to memory saving by specifying possible subcoordinates | |
383 see the readcount method for further discussion. size_scope must be an interable''' | |
384 upstream_coord = upstream_coord or self.windowoffset | |
385 downstream_coord = downstream_coord or self.windowoffset+self.size-1 | |
386 freqDic = {"A":0,"T":0,"G":0,"C":0, "N":0} | |
387 convertDic = {"A":"T","T":"A","G":"C","C":"G","N":"N"} | |
388 for offset in self.readDict: | |
389 if (abs(offset) < upstream_coord or abs(offset) > downstream_coord): continue | |
390 for size in self.readDict[offset]: | |
391 if size in size_scope: | |
392 startbase = self.sequence[abs(offset)-self.windowoffset] | |
393 if offset < 0: | |
394 startbase = convertDic[startbase] | |
395 freqDic[startbase] += 1 | |
396 base_sum = float ( sum( freqDic.values()) ) | |
397 if base_sum == 0: | |
398 return "." | |
399 else: | |
400 return freqDic["T"] / base_sum * 100 | |
401 | |
402 def Ufreq_stranded (self, size_scope, upstream_coord=None, downstream_coord=None): | |
403 ''' migration to memory saving by specifying possible subcoordinates | |
404 see the readcount method for further discussion. size_scope must be an interable | |
405 This method is similar to the Ufreq method but take strandness into account''' | |
406 upstream_coord = upstream_coord or self.windowoffset | |
407 downstream_coord = downstream_coord or self.windowoffset+self.size-1 | |
408 freqDic = {"Afor":0,"Tfor":0,"Gfor":0,"Cfor":0, "Nfor":0,"Arev":0,"Trev":0,"Grev":0,"Crev":0, "Nrev":0} | |
409 convertDic = {"A":"T","T":"A","G":"C","C":"G","N":"N"} | |
410 for offset in self.readDict: | |
411 if (abs(offset) < upstream_coord or abs(offset) > downstream_coord): continue | |
412 for size in self.readDict[offset]: | |
413 if size in size_scope: | |
414 startbase = self.sequence[abs(offset)-self.windowoffset] | |
415 if offset < 0: | |
416 startbase = convertDic[startbase] | |
417 freqDic[startbase+"rev"] += 1 | |
418 else: | |
419 freqDic[startbase+"for"] += 1 | |
420 forward_sum = float ( freqDic["Afor"]+freqDic["Tfor"]+freqDic["Gfor"]+freqDic["Cfor"]+freqDic["Nfor"]) | |
421 reverse_sum = float ( freqDic["Arev"]+freqDic["Trev"]+freqDic["Grev"]+freqDic["Crev"]+freqDic["Nrev"]) | |
422 if forward_sum == 0 and reverse_sum == 0: | |
423 return ". | ." | |
424 elif reverse_sum == 0: | |
425 return "%s | ." % (freqDic["Tfor"] / forward_sum * 100) | |
426 elif forward_sum == 0: | |
427 return ". | %s" % (freqDic["Trev"] / reverse_sum * 100) | |
428 else: | |
429 return "%s | %s" % (freqDic["Tfor"] / forward_sum * 100, freqDic["Trev"] / reverse_sum * 100) | |
430 | |
431 def readplot (self): | |
432 norm=self.norm | |
433 readmap = {} | |
434 for offset in self.readDict.keys(): | |
435 readmap[abs(offset)] = ( len(self.readDict.get(-abs(offset),[]))*norm , len(self.readDict.get(abs(offset),[]))*norm ) | |
436 mylist = [] | |
437 for offset in sorted(readmap): | |
438 if readmap[offset][1] != 0: | |
439 mylist.append("%s\t%s\t%s\t%s" % (self.gene, offset, readmap[offset][1], "F") ) | |
440 if readmap[offset][0] != 0: | |
441 mylist.append("%s\t%s\t%s\t%s" % (self.gene, offset, -readmap[offset][0], "R") ) | |
442 ## patch to avoid missing graphs when parsed by R-lattice. 27-08-2014. Test and validate ! | |
443 if not mylist: | |
444 mylist.append("%s\t%s\t%s\t%s" % (self.gene, 1, 0, "F") ) | |
445 ### | |
446 return mylist | |
447 | |
448 def readcoverage (self, upstream_coord=None, downstream_coord=None, windowName=None): | |
449 '''Use by MirParser tool''' | |
450 upstream_coord = upstream_coord or 1 | |
451 downstream_coord = downstream_coord or self.size | |
452 windowName = windowName or "%s_%s_%s" % (self.gene, upstream_coord, downstream_coord) | |
453 forORrev_coverage = dict ([(i,0) for i in xrange(1, downstream_coord-upstream_coord+1)]) | |
454 totalforward = self.readcount(upstream_coord=upstream_coord, downstream_coord=downstream_coord, polarity="forward") | |
455 totalreverse = self.readcount(upstream_coord=upstream_coord, downstream_coord=downstream_coord, polarity="reverse") | |
456 if totalforward > totalreverse: | |
457 majorcoverage = "forward" | |
458 for offset in self.readDict.keys(): | |
459 if (offset > 0) and ((offset-upstream_coord+1) in forORrev_coverage.keys() ): | |
460 for read in self.readDict[offset]: | |
461 for i in xrange(read): | |
462 try: | |
463 forORrev_coverage[offset-upstream_coord+1+i] += 1 | |
464 except KeyError: | |
465 continue # a sense read may span over the downstream limit | |
466 else: | |
467 majorcoverage = "reverse" | |
468 for offset in self.readDict.keys(): | |
469 if (offset < 0) and (-offset-upstream_coord+1 in forORrev_coverage.keys() ): | |
470 for read in self.readDict[offset]: | |
471 for i in xrange(read): | |
472 try: | |
473 forORrev_coverage[-offset-upstream_coord-i] += 1 ## positive coordinates in the instance, with + for forward coverage and - for reverse coverage | |
474 except KeyError: | |
475 continue # an antisense read may span over the upstream limit | |
476 output_list = [] | |
477 maximum = max (forORrev_coverage.values()) or 1 | |
478 for n in sorted (forORrev_coverage): | |
479 output_list.append("%s\t%s\t%s\t%s\t%s\t%s\t%s" % (self.biosample, windowName, n, float(n)/(downstream_coord-upstream_coord+1), forORrev_coverage[n], float(forORrev_coverage[n])/maximum, majorcoverage)) | |
480 return "\n".join(output_list) | |
481 | |
482 | |
483 def signature (self, minquery, maxquery, mintarget, maxtarget, scope, zscore="no", upstream_coord=None, downstream_coord=None): | |
484 ''' migration to memory saving by specifying possible subcoordinates | |
485 see the readcount method for further discussion | |
486 scope must be a python iterable; scope define the *relative* offset range to be computed''' | |
487 upstream_coord = upstream_coord or self.windowoffset | |
488 downstream_coord = downstream_coord or self.windowoffset+self.size-1 | |
489 query_range = range (minquery, maxquery+1) | |
490 target_range = range (mintarget, maxtarget+1) | |
491 Query_table = {} | |
492 Target_table = {} | |
493 frequency_table = dict ([(i, 0) for i in scope]) | |
494 for offset in self.readDict: | |
495 if (abs(offset) < upstream_coord or abs(offset) > downstream_coord): continue | |
496 for size in self.readDict[offset]: | |
497 if size in query_range: | |
498 Query_table[offset] = Query_table.get(offset, 0) + 1 | |
499 if size in target_range: | |
500 Target_table[offset] = Target_table.get(offset, 0) + 1 | |
501 for offset in Query_table: | |
502 for i in scope: | |
503 frequency_table[i] += min(Query_table[offset], Target_table.get(-offset -i +1, 0)) | |
504 if minquery==mintarget and maxquery==maxtarget: ## added to incorporate the division by 2 in the method (26/11/2013), see signature_options.py and lattice_signature.py | |
505 frequency_table = dict([(i,frequency_table[i]/2) for i in frequency_table]) | |
506 if zscore == "yes": | |
507 z_mean = mean(frequency_table.values() ) | |
508 z_std = std(frequency_table.values() ) | |
509 if z_std == 0: | |
510 frequency_table = dict([(i,0) for i in frequency_table] ) | |
511 else: | |
512 frequency_table = dict([(i, (frequency_table[i]- z_mean)/z_std) for i in frequency_table] ) | |
513 return frequency_table | |
514 | |
515 def hannon_signature (self, minquery, maxquery, mintarget, maxtarget, scope, upstream_coord=None, downstream_coord=None): | |
516 ''' migration to memory saving by specifying possible subcoordinates see the readcount method for further discussion | |
517 note that scope must be an iterable (a list or a tuple), which specifies the relative offsets that will be computed''' | |
518 upstream_coord = upstream_coord or self.windowoffset | |
519 downstream_coord = downstream_coord or self.windowoffset+self.size-1 | |
520 query_range = range (minquery, maxquery+1) | |
521 target_range = range (mintarget, maxtarget+1) | |
522 Query_table = {} | |
523 Target_table = {} | |
524 Total_Query_Numb = 0 | |
525 general_frequency_table = dict ([(i,0) for i in scope]) | |
526 ## filtering the appropriate reads for the study | |
527 for offset in self.readDict: | |
528 if (abs(offset) < upstream_coord or abs(offset) > downstream_coord): continue | |
529 for size in self.readDict[offset]: | |
530 if size in query_range: | |
531 Query_table[offset] = Query_table.get(offset, 0) + 1 | |
532 Total_Query_Numb += 1 | |
533 if size in target_range: | |
534 Target_table[offset] = Target_table.get(offset, 0) + 1 | |
535 for offset in Query_table: | |
536 frequency_table = dict ([(i,0) for i in scope]) | |
537 number_of_targets = 0 | |
538 for i in scope: | |
539 frequency_table[i] += Query_table[offset] * Target_table.get(-offset -i +1, 0) | |
540 number_of_targets += Target_table.get(-offset -i +1, 0) | |
541 for i in scope: | |
542 try: | |
543 general_frequency_table[i] += (1. / number_of_targets / Total_Query_Numb) * frequency_table[i] | |
544 except ZeroDivisionError : | |
545 continue | |
546 return general_frequency_table | |
547 | |
548 def phasing (self, size_range, scope): | |
549 ''' to calculate autocorelation like signal - scope must be an python iterable''' | |
550 read_table = {} | |
551 total_read_number = 0 | |
552 general_frequency_table = dict ([(i, 0) for i in scope]) | |
553 ## read input filtering | |
554 for offset in self.readDict: | |
555 for size in self.readDict[offset]: | |
556 if size in size_range: | |
557 read_table[offset] = read_table.get(offset, 0) + 1 | |
558 total_read_number += 1 | |
559 ## per offset read phasing computing | |
560 for offset in read_table: | |
561 frequency_table = dict ([(i, 0) for i in scope]) # local frequency table | |
562 number_of_targets = 0 | |
563 for i in scope: | |
564 if offset > 0: | |
565 frequency_table[i] += read_table[offset] * read_table.get(offset + i, 0) | |
566 number_of_targets += read_table.get(offset + i, 0) | |
567 else: | |
568 frequency_table[i] += read_table[offset] * read_table.get(offset - i, 0) | |
569 number_of_targets += read_table.get(offset - i, 0) | |
570 ## inclusion of local frequency table in the general frequency table (all offsets average) | |
571 for i in scope: | |
572 try: | |
573 general_frequency_table[i] += (1. / number_of_targets / total_read_number) * frequency_table[i] | |
574 except ZeroDivisionError : | |
575 continue | |
576 return general_frequency_table | |
577 | |
578 | |
579 | |
580 def z_signature (self, minquery, maxquery, mintarget, maxtarget, scope): | |
581 '''Must do: from numpy import mean, std, to use this method; scope must be a python iterable and defines the relative offsets to compute''' | |
582 frequency_table = self.signature (minquery, maxquery, mintarget, maxtarget, scope) | |
583 z_table = {} | |
584 frequency_list = [frequency_table[i] for i in sorted (frequency_table)] | |
585 if std(frequency_list): | |
586 meanlist = mean(frequency_list) | |
587 stdlist = std(frequency_list) | |
588 z_list = [(i-meanlist)/stdlist for i in frequency_list] | |
589 return dict (zip (sorted(frequency_table), z_list) ) | |
590 else: | |
591 return dict (zip (sorted(frequency_table), [0 for i in frequency_table]) ) | |
592 | |
593 def percent_signature (self, minquery, maxquery, mintarget, maxtarget, scope): | |
594 frequency_table = self.signature (minquery, maxquery, mintarget, maxtarget, scope) | |
595 total = float(sum ([self.readsizes().get(i,0) for i in set(range(minquery,maxquery)+range(mintarget,maxtarget))]) ) | |
596 if total == 0: | |
597 return dict( [(i,0) for i in scope]) | |
598 return dict( [(i, frequency_table[i]/total*100) for i in scope]) | |
599 | |
600 def pairer (self, overlap, minquery, maxquery, mintarget, maxtarget): | |
601 queryhash = defaultdict(list) | |
602 targethash = defaultdict(list) | |
603 query_range = range (int(minquery), int(maxquery)+1) | |
604 target_range = range (int(mintarget), int(maxtarget)+1) | |
605 paired_sequences = [] | |
606 for offset in self.readDict: # selection of data | |
607 for size in self.readDict[offset]: | |
608 if size in query_range: | |
609 queryhash[offset].append(size) | |
610 if size in target_range: | |
611 targethash[offset].append(size) | |
612 for offset in queryhash: | |
613 if offset >= 0: matched_offset = -offset - overlap + 1 | |
614 else: matched_offset = -offset - overlap + 1 | |
615 if targethash[matched_offset]: | |
616 paired = min ( len(queryhash[offset]), len(targethash[matched_offset]) ) | |
617 if offset >= 0: | |
618 for i in range (paired): | |
619 paired_sequences.append("+%s" % RNAtranslate ( self.sequence[offset:offset+queryhash[offset][i]]) ) | |
620 paired_sequences.append("-%s" % RNAtranslate (antipara (self.sequence[-matched_offset-targethash[matched_offset][i]+1:-matched_offset+1]) ) ) | |
621 if offset < 0: | |
622 for i in range (paired): | |
623 paired_sequences.append("-%s" % RNAtranslate (antipara (self.sequence[-offset-queryhash[offset][i]+1:-offset+1]) ) ) | |
624 paired_sequences.append("+%s" % RNAtranslate (self.sequence[matched_offset:matched_offset+targethash[matched_offset][i]] ) ) | |
625 return paired_sequences | |
626 | |
627 def pairable (self, overlap, minquery, maxquery, mintarget, maxtarget): | |
628 queryhash = defaultdict(list) | |
629 targethash = defaultdict(list) | |
630 query_range = range (int(minquery), int(maxquery)+1) | |
631 target_range = range (int(mintarget), int(maxtarget)+1) | |
632 paired_sequences = [] | |
633 | |
634 for offset in self.readDict: # selection of data | |
635 for size in self.readDict[offset]: | |
636 if size in query_range: | |
637 queryhash[offset].append(size) | |
638 if size in target_range: | |
639 targethash[offset].append(size) | |
640 | |
641 for offset in queryhash: | |
642 matched_offset = -offset - overlap + 1 | |
643 if targethash[matched_offset]: | |
644 if offset >= 0: | |
645 for i in queryhash[offset]: | |
646 paired_sequences.append("+%s" % RNAtranslate (self.sequence[offset:offset+i]) ) | |
647 for i in targethash[matched_offset]: | |
648 paired_sequences.append( "-%s" % RNAtranslate (antipara (self.sequence[-matched_offset-i+1:-matched_offset+1]) ) ) | |
649 if offset < 0: | |
650 for i in queryhash[offset]: | |
651 paired_sequences.append("-%s" % RNAtranslate (antipara (self.sequence[-offset-i+1:-offset+1]) ) ) | |
652 for i in targethash[matched_offset]: | |
653 paired_sequences.append("+%s" % RNAtranslate (self.sequence[matched_offset:matched_offset+i] ) ) | |
654 return paired_sequences | |
655 | |
656 def newpairable_bowtie (self, overlap, minquery, maxquery, mintarget, maxtarget): | |
657 ''' revision of pairable on 3-12-2012, with focus on the offset shift problem (bowtie is 1-based cooordinates whereas python strings are 0-based coordinates''' | |
658 queryhash = defaultdict(list) | |
659 targethash = defaultdict(list) | |
660 query_range = range (int(minquery), int(maxquery)+1) | |
661 target_range = range (int(mintarget), int(maxtarget)+1) | |
662 bowtie_output = [] | |
663 | |
664 for offset in self.readDict: # selection of data | |
665 for size in self.readDict[offset]: | |
666 if size in query_range: | |
667 queryhash[offset].append(size) | |
668 if size in target_range: | |
669 targethash[offset].append(size) | |
670 counter = 0 | |
671 for offset in queryhash: | |
672 matched_offset = -offset - overlap + 1 | |
673 if targethash[matched_offset]: | |
674 if offset >= 0: | |
675 for i in queryhash[offset]: | |
676 counter += 1 | |
677 bowtie_output.append("%s\t%s\t%s\t%s\t%s" % (counter, "+", self.gene, offset-1, self.sequence[offset-1:offset-1+i]) ) # attention a la base 1-0 de l'offset | |
678 if offset < 0: | |
679 for i in queryhash[offset]: | |
680 counter += 1 | |
681 bowtie_output.append("%s\t%s\t%s\t%s\t%s" % (counter, "-", self.gene, -offset-i, self.sequence[-offset-i:-offset])) # attention a la base 1-0 de l'offset | |
682 return bowtie_output | |
683 | |
684 | |
685 def __main__(bowtie_index_path, bowtie_output_path): | |
686 sequenceDic = get_fasta (bowtie_index_path) | |
687 objDic = {} | |
688 F = open (bowtie_output_path, "r") # F is the bowtie output taken as input | |
689 for line in F: | |
690 fields = line.split() | |
691 polarity = fields[1] | |
692 gene = fields[2] | |
693 offset = int(fields[3]) | |
694 size = len (fields[4]) | |
695 try: | |
696 objDic[gene].addread (polarity, offset, size) | |
697 except KeyError: | |
698 objDic[gene] = SmRNAwindow(gene, sequenceDic[gene]) | |
699 objDic[gene].addread (polarity, offset, size) | |
700 F.close() | |
701 for gene in objDic: | |
702 print gene, objDic[gene].pairer(19,19,23,19,23) | |
703 | |
704 if __name__ == "__main__" : __main__(sys.argv[1], sys.argv[2]) |