Mercurial > repos > artbio > small_rna_clusters
view small_rna_clusters.r @ 0:8028521b6e4f draft
"planemo upload for repository https://github.com/ARTbio/tools-artbio/tree/master/tools/small_rna_clusters commit f38805cf151cbda1cf7de0a92cdfeb5978f26547"
author | artbio |
---|---|
date | Mon, 07 Oct 2019 12:51:25 -0400 |
parents | |
children | 160e35e432a0 |
line wrap: on
line source
## Setup R error handling to go to stderr options( show.error.messages=F, error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) options(warn = -1) library(RColorBrewer) library(lattice) library(latticeExtra) library(grid) library(gridExtra) library(optparse) option_list <- list( make_option(c("-f", "--first_dataframe"), type="character", help="path to first dataframe"), make_option("--first_plot_method", type = "character", help="How additional data should be plotted"), make_option("--output_pdf", type = "character", help="path to the pdf file with plots") ) parser <- OptionParser(usage = "%prog [options] file", option_list = option_list) args = parse_args(parser) # data frames implementation ## first table Table = read.delim(args$first_dataframe, header=T, row.names=NULL) colnames(Table)[1] <- "Dataset" dropcol <- c("Strandness", "z.score") # not used by this Rscript and is dropped for backward compatibility Table <- Table[,!(names(Table) %in% dropcol)] if (args$first_plot_method == "Counts" | args$first_plot_method == "Size") { Table <- within(Table, Counts[Polarity=="R"] <- (Counts[Polarity=="R"]*-1)) } n_samples=length(unique(Table$Dataset)) samples = unique(Table$Dataset) genes=unique(Table$Chromosome) per_gene_readmap=lapply(genes, function(x) subset(Table, Chromosome==x)) per_gene_limit=lapply(genes, function(x) c(1, unique(subset(Table, Chromosome==x)$Chrom_length)) ) n_genes=length(per_gene_readmap) ## functions plot_unit = function(df, method=args$first_plot_method, ...) { p = xyplot(Counts~Coordinate|factor(Dataset, levels=unique(Dataset))+factor(Chromosome, levels=unique(Chromosome)), data=df, type='h', lwd=1.5, scales= list(relation="free", x=list(rot=0, cex=0.7, axs="i", tck=0.5), y=list(tick.number=4, rot=90, cex=0.7)), xlab=NULL, main=NULL, ylab=NULL, as.table=T, origin = 0, horizontal=FALSE, group=Polarity, col=c("red","blue"), par.strip.text = list(cex=0.7), ...) p=combineLimits(p) } ## function parameters par.settings.firstplot = list(layout.heights=list(top.padding=-2, bottom.padding=-2),strip.background=list(col=c("lightblue","lightgreen"))) title_first_method = list(Counts="Read Counts", Coverage="Coverage depths", Median="Median sizes", Mean="Mean sizes", Size="Size Distributions") legend_first_method =list(Counts="Read count", Coverage="Coverage depth", Median="Median size", Mean="Mean size", Size="Read count") bottom_first_method =list(Counts="Coordinates (nucleotides)",Coverage="Coordinates (nucleotides)", Median="Coordinates (nucleotides)", Mean="Coordinates (nucleotides)", Size="Sizes of reads") ## Plotting Functions single_plot <- function(...) { width = 8.2677 * n_samples / 2 rows_per_page=8 graph_heights=c(rep(40,8),10) pdf(file=args$output_pdf, paper="special", height=15, width=width) for (i in seq(1,n_genes,rows_per_page)) { start=i end=i+rows_per_page-1 if (end>n_genes) {end=n_genes} if (end-start+1 < 8) {graph_heights=c(rep(c(40),end-start+1),10,rep(c(40),8-(end-start+1)))} first_plot.list = lapply(per_gene_readmap[start:end], function(x) update(useOuterStrips(plot_unit(x, par.settings=par.settings.firstplot),strip.left=strip.custom(par.strip.text = list(cex=0.5))))) plot.list=rbind(first_plot.list) args_list=c(plot.list, list( nrow=rows_per_page+1, ncol=1, heights=unit(graph_heights, rep("mm", 9)), top=textGrob("Cluster Read Counts (Peaks in middle of clusters)", gp=gpar(cex=1), vjust=0, just="top"), left=textGrob("Read Counts", gp=gpar(cex=1), vjust=0, hjust=0, x=1, y=(-0.41/7)*(end-start-(6.23/0.41)), rot=90), sub=textGrob("Coordinates (nucleotides)", gp=gpar(cex=1), just="bottom", vjust=2) ) ) do.call(grid.arrange, args_list) } devname=dev.off() } # main single_plot()