Mercurial > repos > artbio > small_rna_maps
diff small_rna_maps.r @ 32:f2e7ad3058e8 draft
"planemo upload for repository https://github.com/ARTbio/tools-artbio/tree/master/tools/small_rna_maps commit 51dc6c56c7d95fc229ffee958354211cd454fd36"
author | artbio |
---|---|
date | Sun, 09 May 2021 17:11:00 +0000 |
parents | 183bf49fe77c |
children | 966bc5c46efd |
line wrap: on
line diff
--- a/small_rna_maps.r Sun Oct 06 21:11:19 2019 -0400 +++ b/small_rna_maps.r Sun May 09 17:11:00 2021 +0000 @@ -1,6 +1,9 @@ ## Setup R error handling to go to stderr -options( show.error.messages=F, - error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) +options(show.error.messages = F, + error = function() { + cat(geterrmessage(), file = stderr()); q("no", 1, F) + } +) options(warn = -1) library(RColorBrewer) library(lattice) @@ -11,165 +14,164 @@ option_list <- list( - make_option(c("-i", "--ymin"), type="double", help="set min ylimit. e.g. '-100.0'"), - make_option(c("-a", "--ymax"), type="double", help="set max ylimit. e.g. '100.0'"), - make_option(c("-f", "--first_dataframe"), type="character", help="path to first dataframe"), - make_option(c("-e", "--extra_dataframe"), type="character", help="path to additional dataframe"), - make_option(c("-n", "--normalization"), type="character", help="space-separated normalization/size factors"), - make_option("--first_plot_method", type = "character", help="How additional data should be plotted"), - make_option("--extra_plot_method", type = "character", help="How additional data should be plotted"), - make_option("--global", type = "character", help="data should be plotted as global size distribution"), - make_option("--output_pdf", type = "character", help="path to the pdf file with plots") + make_option(c("-i", "--ymin"), type = "double", help = "set min ylimit. e.g. '-100.0'"), + make_option(c("-a", "--ymax"), type = "double", help = "set max ylimit. e.g. '100.0'"), + make_option(c("-f", "--first_dataframe"), type = "character", help = "path to first dataframe"), + make_option(c("-e", "--extra_dataframe"), type = "character", help = "path to additional dataframe"), + make_option(c("-n", "--normalization"), type = "character", help = "space-separated normalization/size factors"), + make_option("--first_plot_method", type = "character", help = "How additional data should be plotted"), + make_option("--extra_plot_method", type = "character", help = "How additional data should be plotted"), + make_option("--global", type = "character", help = "data should be plotted as global size distribution"), + make_option("--output_pdf", type = "character", help = "path to the pdf file with plots") ) parser <- OptionParser(usage = "%prog [options] file", option_list = option_list) -args = parse_args(parser) +args <- parse_args(parser) # data frames implementation ## first table -Table = read.delim(args$first_dataframe, header=T, row.names=NULL) -colnames(Table)[1] <- "Dataset" +table <- read.delim(args$first_dataframe, header = T, row.names = NULL) +colnames(table)[1] <- "Dataset" dropcol <- c("Strandness", "z.score") # not used by this Rscript and is dropped for backward compatibility -Table <- Table[,!(names(Table) %in% dropcol)] +table <- table[, !(names(table) %in% dropcol)] if (args$first_plot_method == "Counts" | args$first_plot_method == "Size") { - Table <- within(Table, Counts[Polarity=="R"] <- (Counts[Polarity=="R"]*-1)) + table <- within(table, Counts[Polarity == "R"] <- (Counts[Polarity == "R"] * - 1)) } -n_samples=length(unique(Table$Dataset)) -samples = unique(Table$Dataset) +n_samples <- length(unique(table$Dataset)) +samples <- unique(table$Dataset) if (args$normalization != "") { - norm_factors = as.numeric(unlist(strsplit(args$normalization, " "))) + norm_factors <- as.numeric(unlist(strsplit(args$normalization, " "))) } else { - norm_factors = rep(1, n_samples) + norm_factors <- rep(1, n_samples) } if (args$first_plot_method == "Counts" | args$first_plot_method == "Size" | args$first_plot_method == "Coverage") { - i = 1 + i <- 1 for (sample in samples) { - # Warning - # Here the column is hard coded as the last column (dangerous) + # Warning Here the column is hard coded as the last column (dangerous) # because its name changes with the method - Table[, length(Table)][Table$Dataset==sample] <- Table[, length(Table)][Table$Dataset==sample]*norm_factors[i] - i = i + 1 + table[, length(table)][table$Dataset == sample] <- table[, length(table)][table$Dataset == sample] * norm_factors[i] + i <- i + 1 } } -genes=unique(Table$Chromosome) -per_gene_readmap=lapply(genes, function(x) subset(Table, Chromosome==x)) -per_gene_limit=lapply(genes, function(x) c(1, unique(subset(Table, Chromosome==x)$Chrom_length)) ) -n_genes=length(per_gene_readmap) +genes <- unique(table$Chromosome) +per_gene_readmap <- lapply(genes, function(x) subset(table, Chromosome == x)) +per_gene_limit <- lapply(genes, function(x) c(1, unique(subset(table, Chromosome == x)$Chrom_length))) +n_genes <- length(per_gene_readmap) # second table -if (args$extra_plot_method != '') { - ExtraTable=read.delim(args$extra_dataframe, header=T, row.names=NULL) - colnames(ExtraTable)[1] <- "Dataset" - dropcol <- c("Strandness", "z.score") # not used by this Rscript and is dropped for backward compatibility - Table <- Table[,!(names(Table) %in% dropcol)] - if (args$extra_plot_method == "Counts" | args$extra_plot_method=='Size') { - ExtraTable <- within(ExtraTable, Counts[Polarity=="R"] <- (Counts[Polarity=="R"]*-1)) +if (args$extra_plot_method != "") { + extra_table <- read.delim(args$extra_dataframe, header = T, row.names = NULL) + colnames(extra_table)[1] <- "Dataset" + dropcol <- c("Strandness", "z.score") + table <- table[, !(names(table) %in% dropcol)] + if (args$extra_plot_method == "Counts" | args$extra_plot_method == "Size") { + extra_table <- within(extra_table, Counts[Polarity == "R"] <- (Counts[Polarity == "R"] * -1)) } if (args$extra_plot_method == "Counts" | args$extra_plot_method == "Size" | args$extra_plot_method == "Coverage") { - i = 1 + i <- 1 for (sample in samples) { - ExtraTable[, length(ExtraTable)][ExtraTable$Dataset==sample] <- ExtraTable[, length(ExtraTable)][ExtraTable$Dataset==sample]*norm_factors[i] - i = i + 1 + extra_table[, length(extra_table)][extra_table$Dataset == sample] <- extra_table[, length(extra_table)][extra_table$Dataset == sample] * norm_factors[i] + i <- i + 1 } } - per_gene_size=lapply(genes, function(x) subset(ExtraTable, Chromosome==x)) + per_gene_size <- lapply(genes, function(x) subset(extra_table, Chromosome == x)) } ## functions -globalbc = function(df, global="", ...) { +globalbc <- function(df, global = "", ...) { if (global == "yes") { - bc <- barchart(Counts~as.factor(Size)|factor(Dataset, levels=unique(Dataset)), + bc <- barchart(Counts ~ as.factor(Size) | factor(Dataset, levels = unique(Dataset)), data = df, origin = 0, - horizontal=FALSE, - col=c("darkblue"), - scales=list(y=list(tick.number=4, rot=90, relation="same", cex=0.5, alternating=T), x=list(rot=0, cex=0.6, tck=0.5, alternating=c(3,3))), - xlab=list(label=bottom_first_method[[args$first_plot_method]], cex=.85), - ylab=list(label=legend_first_method[[args$first_plot_method]], cex=.85), - main=title_first_method[[args$first_plot_method]], - layout = c(2, 6), newpage=T, - as.table=TRUE, - aspect=0.5, - strip = strip.custom(par.strip.text = list(cex = 1), which.given=1, bg="lightblue"), + horizontal = FALSE, + col = c("darkblue"), + scales = list(y = list(tick.number = 4, rot = 90, relation = "same", cex = 0.5, alternating = T), x = list(rot = 0, cex = 0.6, tck = 0.5, alternating = c(3, 3))), + xlab = list(label = bottom_first_method[[args$first_plot_method]], cex = .85), + ylab = list(label = legend_first_method[[args$first_plot_method]], cex = .85), + main = title_first_method[[args$first_plot_method]], + layout = c(2, 6), newpage = T, + as.table = TRUE, + aspect = 0.5, + strip = strip.custom(par.strip.text = list(cex = 1), which.given = 1, bg = "lightblue"), ... ) } else { - bc <- barchart(Counts~as.factor(Size)|factor(Dataset, levels=unique(Dataset)), + bc <- barchart(Counts ~ as.factor(Size) | factor(Dataset, levels = unique(Dataset)), data = df, origin = 0, - horizontal=FALSE, - group=Polarity, - stack=TRUE, - col=c('red', 'blue'), - scales=list(y=list(tick.number=4, rot=90, relation="same", cex=0.5, alternating=T), x=list(rot=0, cex=0.6, tck=0.5, alternating=c(3,3))), - xlab=list(label=bottom_first_method[[args$first_plot_method]], cex=.85), - ylab=list(label=legend_first_method[[args$first_plot_method]], cex=.85), - main=title_first_method[[args$first_plot_method]], - layout = c(2, 6), newpage=T, - as.table=TRUE, - aspect=0.5, - strip = strip.custom(par.strip.text = list(cex = 1), which.given=1, bg="lightblue"), + horizontal = FALSE, + group = Polarity, + stack = TRUE, + col = c("red", "blue"), + scales = list(y = list(tick.number = 4, rot = 90, relation = "same", cex = 0.5, alternating = T), x = list(rot = 0, cex = 0.6, tck = 0.5, alternating = c(3, 3))), + xlab = list(label = bottom_first_method[[args$first_plot_method]], cex = .85), + ylab = list(label = legend_first_method[[args$first_plot_method]], cex = .85), + main = title_first_method[[args$first_plot_method]], + layout = c(2, 6), newpage = T, + as.table = TRUE, + aspect = 0.5, + strip = strip.custom(par.strip.text = list(cex = 1), which.given = 1, bg = "lightblue"), ... ) } return(bc) } -plot_unit = function(df, method=args$first_plot_method, ...) { - if (exists('ymin', where=args)){ - min=args$ymin - }else{ - min='' +plot_unit <- function(df, method = args$first_plot_method, ...) { + if (exists("ymin", where = args)) { + min <- args$ymin + } else { + min <- "" } - if ((exists('ymax', where=args))){ - max=args$ymax - }else{ - max='' + if ((exists("ymax", where = args))) { + max <- args$ymax + } else { + max <- "" } - ylimits=c(min,max) - if (method == 'Counts') { - p = xyplot(Counts~Coordinate|factor(Dataset, levels=unique(Dataset))+factor(Chromosome, levels=unique(Chromosome)), - data=df, - type='h', - lwd=1.5, - scales= list(relation="free", x=list(rot=0, cex=0.7, axs="i", tck=0.5), y=list(tick.number=4, rot=90, cex=0.7)), - xlab=NULL, main=NULL, ylab=NULL, ylim=ylimits, - as.table=T, + ylimits <- c(min, max) + if (method == "Counts") { + p <- xyplot(Counts ~ Coordinate | factor(Dataset, levels = unique(Dataset)) + factor(Chromosome, levels = unique(Chromosome)), + data = df, + type = "h", + lwd = 1.5, + scales = list(relation = "free", x = list(rot = 0, cex = 0.7, axs = "i", tck = 0.5), y = list(tick.number = 4, rot = 90, cex = 0.7)), + xlab = NULL, main = NULL, ylab = NULL, ylim = ylimits, + as.table = T, origin = 0, - horizontal=FALSE, - group=Polarity, - col=c("red","blue"), - par.strip.text = list(cex=0.7), + horizontal = FALSE, + group = Polarity, + col = c("red", "blue"), + par.strip.text = list(cex = 0.7), ...) - p=combineLimits(p) + p <- combineLimits(p) } else if (method != "Size") { - p = xyplot(eval(as.name(method))~Coordinate|factor(Dataset, levels=unique(Dataset))+factor(Chromosome, levels=unique(Chromosome)), - data=df, - type= ifelse(method=='Coverage', 'l', 'p'), - pch=19, - cex=0.35, - scales= list(relation="free", x=list(rot=0, cex=0.7, axs="i", tck=0.5), y=list(tick.number=4, rot=90, cex=0.7)), - xlab=NULL, main=NULL, ylab=NULL, ylim=ylimits, - as.table=T, + p <- xyplot(eval(as.name(method)) ~ Coordinate | factor(Dataset, levels = unique(Dataset)) + factor(Chromosome, levels = unique(Chromosome)), + data = df, + type = ifelse(method == "Coverage", "l", "p"), + pch = 19, + cex = 0.35, + scales = list(relation = "free", x = list(rot = 0, cex = 0.7, axs = "i", tck = 0.5), y = list(tick.number = 4, rot = 90, cex = 0.7)), + xlab = NULL, main = NULL, ylab = NULL, ylim = ylimits, + as.table = T, origin = 0, - horizontal=FALSE, - group=Polarity, - col=c("red","blue"), - par.strip.text = list(cex=0.7), + horizontal = FALSE, + group = Polarity, + col = c("red", "blue"), + par.strip.text = list(cex = 0.7), ...) - p=combineLimits(p) + p <- combineLimits(p) } else { - p = barchart(Counts~as.factor(Size)|factor(Dataset, levels=unique(Dataset))+Chromosome, data = df, origin = 0, - horizontal=FALSE, - group=Polarity, - stack=TRUE, - col=c('red', 'blue'), - scales=list(y=list(rot=90, relation="free", cex=0.7), x=list(rot=0, cex=0.7, axs="i", tck=c(1,0))), + p <- barchart(Counts ~ as.factor(Size) | factor(Dataset, levels = unique(Dataset)) + Chromosome, data = df, origin = 0, + horizontal = FALSE, + group = Polarity, + stack = TRUE, + col = c("red", "blue"), + scales = list(y = list(rot = 90, relation = "free", cex = 0.7), x = list(rot = 0, cex = 0.7, axs = "i", tck = c(1, 0))), xlab = NULL, ylab = NULL, main = NULL, - as.table=TRUE, - par.strip.text = list(cex=0.6), + as.table = TRUE, + par.strip.text = list(cex = 0.6), ...) - p=combineLimits(p) + p <- combineLimits(p) } return(p) } @@ -177,88 +179,95 @@ ## function parameters -#par.settings.firstplot = list(layout.heights=list(top.padding=11, bottom.padding = -14)) -#par.settings.secondplot=list(layout.heights=list(top.padding=11, bottom.padding = -15), strip.background=list(col=c("lavender","deepskyblue"))) -par.settings.firstplot = list(layout.heights=list(top.padding=-2, bottom.padding=-2),strip.background=list(col=c("lightblue","lightgreen"))) -par.settings.secondplot=list(layout.heights=list(top.padding=-1, bottom.padding=-1),strip.background=list(col=c("lightblue","lightgreen"))) -title_first_method = list(Counts="Read Counts", Coverage="Coverage depths", Median="Median sizes", Mean="Mean sizes", Size="Size Distributions") -title_extra_method = list(Counts="Read Counts", Coverage="Coverage depths", Median="Median sizes", Mean="Mean sizes", Size="Size Distributions") -legend_first_method =list(Counts="Read count", Coverage="Coverage depth", Median="Median size", Mean="Mean size", Size="Read count") -legend_extra_method =list(Counts="Read count", Coverage="Coverage depth", Median="Median size", Mean="Mean size", Size="Read count") -bottom_first_method =list(Counts="Coordinates (nucleotides)",Coverage="Coordinates (nucleotides)", Median="Coordinates (nucleotides)", Mean="Coordinates (nucleotides)", Size="Sizes of reads") -bottom_extra_method =list(Counts="Coordinates (nucleotides)",Coverage="Coordinates (nucleotides)", Median="Coordinates (nucleotides)", Mean="Coordinates (nucleotides)", Size="Sizes of reads") +par_settings_firstplot <- list(layout.heights = list(top.padding = -2, bottom.padding = -2), strip.background = list(col = c("lightblue", "lightgreen"))) +par_settings_secondplot <- list(layout.heights = list(top.padding = -1, bottom.padding = -1), strip.background = list(col = c("lightblue", "lightgreen"))) +title_first_method <- list(Counts = "Read Counts", Coverage = "Coverage depths", Median = "Median sizes", Mean = "Mean sizes", Size = "Size Distributions") +title_extra_method <- list(Counts = "Read Counts", Coverage = "Coverage depths", Median = "Median sizes", Mean = "Mean sizes", Size = "Size Distributions") +legend_first_method <- list(Counts = "Read count", Coverage = "Coverage depth", Median = "Median size", Mean = "Mean size", Size = "Read count") +legend_extra_method <- list(Counts = "Read count", Coverage = "Coverage depth", Median = "Median size", Mean = "Mean size", Size = "Read count") +bottom_first_method <- list(Counts = "Coordinates (nucleotides)", Coverage = "Coordinates (nucleotides)", Median = "Coordinates (nucleotides)", Mean = "Coordinates (nucleotides)", Size = "Sizes of reads") +bottom_extra_method <- list(Counts = "Coordinates (nucleotides)", Coverage = "Coordinates (nucleotides)", Median = "Coordinates (nucleotides)", Mean = "Coordinates (nucleotides)", Size = "Sizes of reads") ## Plotting Functions double_plot <- function(...) { - page_height = 15 - rows_per_page = 10 - graph_heights=c(40,30,40,30,40,30,40,30,40,30,10) - page_width=8.2677 * n_samples / 2 - pdf(file=args$output_pdf, paper="special", height=page_height, width=page_width) - for (i in seq(1,n_genes,rows_per_page/2)) { - start=i - end=i+rows_per_page/2-1 - if (end>n_genes) {end=n_genes} - if (end-start+1 < 5) {graph_heights=c(rep(c(40,30),end-start+1),10,rep(c(40,30),5-(end-start+1)))} - first_plot.list = lapply(per_gene_readmap[start:end], function(x) update(useOuterStrips(plot_unit(x, par.settings=par.settings.secondplot), strip.left=strip.custom(par.strip.text = list(cex=0.5))))) - second_plot.list = lapply(per_gene_size[start:end], function(x) update(useOuterStrips(plot_unit(x, method=args$extra_plot_method, par.settings=par.settings.firstplot), strip.left=strip.custom(par.strip.text = list(cex=0.5)), strip=FALSE))) - plot.list=rbind(first_plot.list, second_plot.list) - args_list=c(plot.list, list( nrow=rows_per_page+1, ncol=1, heights=unit(graph_heights, rep("mm", 11)), - top=textGrob(paste(title_first_method[[args$first_plot_method]], "and", title_extra_method[[args$extra_plot_method]]), gp=gpar(cex=1), vjust=0, just="top"), - left=textGrob(paste(legend_first_method[[args$first_plot_method]], "/", legend_extra_method[[args$extra_plot_method]]), gp=gpar(cex=1), vjust=0, hjust=0, x=1, y=(-0.38/4)*(end-start-(3.28/0.38)), rot=90), - sub=textGrob(paste(bottom_first_method[[args$first_plot_method]], "/", bottom_extra_method[[args$extra_plot_method]]), gp=gpar(cex=1), just="bottom", vjust=2) + page_height <- 15 + rows_per_page <- 10 + graph_heights <- c(40, 30, 40, 30, 40, 30, 40, 30, 40, 30, 10) + page_width <- 8.2677 * n_samples / 2 + pdf(file = args$output_pdf, paper = "special", height = page_height, width = page_width) + for (i in seq(1, n_genes, rows_per_page / 2)) { + start <- i + end <- i + rows_per_page / 2 - 1 + if (end > n_genes) { + end <- n_genes + } + if (end - start + 1 < 5) { + graph_heights <- c(rep(c(40, 30), end - start + 1), 10, rep(c(40, 30), 5 - (end - start + 1))) + } + first_plot_list <- lapply(per_gene_readmap[start:end], function(x) update(useOuterStrips(plot_unit(x, par.settings = par_settings_secondplot), strip.left = strip.custom(par.strip.text = list(cex = 0.5))))) + second_plot_list <- lapply(per_gene_size[start:end], function(x) update(useOuterStrips(plot_unit(x, method = args$extra_plot_method, par.settings = par_settings_firstplot), strip.left = strip.custom(par.strip.text = list(cex = 0.5)), strip = FALSE))) + plot.list <- rbind(first_plot_list, second_plot_list) + args_list <- c(plot.list, list(nrow = rows_per_page + 1, ncol = 1, heights = unit(graph_heights, rep("mm", 11)), + top = textGrob(paste(title_first_method[[args$first_plot_method]], "and", title_extra_method[[args$extra_plot_method]]), gp = gpar(cex = 1), vjust = 0, just = "top"), + left = textGrob(paste(legend_first_method[[args$first_plot_method]], "/", legend_extra_method[[args$extra_plot_method]]), gp = gpar(cex = 1), vjust = 0, hjust = 0, x = 1, y = (-0.38 / 4) * (end - start - (3.28 / 0.38)), rot = 90), + sub = textGrob(paste(bottom_first_method[[args$first_plot_method]], "/", bottom_extra_method[[args$extra_plot_method]]), gp = gpar(cex = 1), just = "bottom", vjust = 2) ) ) do.call(grid.arrange, args_list) } - devname=dev.off() + devname <- dev.off() } single_plot <- function(...) { - width = 8.2677 * n_samples / 2 - rows_per_page=8 - graph_heights=c(rep(40,8),10) - pdf(file=args$output_pdf, paper="special", height=15, width=width) - for (i in seq(1,n_genes,rows_per_page)) { - start=i - end=i+rows_per_page-1 - if (end>n_genes) {end=n_genes} - if (end-start+1 < 8) {graph_heights=c(rep(c(40),end-start+1),10,rep(c(40),8-(end-start+1)))} - first_plot.list = lapply(per_gene_readmap[start:end], function(x) update(useOuterStrips(plot_unit(x, par.settings=par.settings.firstplot),strip.left=strip.custom(par.strip.text = list(cex=0.5))))) - plot.list=rbind(first_plot.list) - args_list=c(plot.list, list( nrow=rows_per_page+1, ncol=1, heights=unit(graph_heights, rep("mm", 9)), - top=textGrob(title_first_method[[args$first_plot_method]], gp=gpar(cex=1), vjust=0, just="top"), - left=textGrob(legend_first_method[[args$first_plot_method]], gp=gpar(cex=1), vjust=0, hjust=0, x=1, y=(-0.41/7)*(end-start-(6.23/0.41)), rot=90), - sub=textGrob(bottom_first_method[[args$first_plot_method]], gp=gpar(cex=1), just="bottom", vjust=2) + width <- 8.2677 * n_samples / 2 + rows_per_page <- 8 + graph_heights <- c(rep(40, 8), 10) + pdf(file = args$output_pdf, paper = "special", height = 15, width = width) + for (i in seq(1, n_genes, rows_per_page)) { + start <- i + end <- i + rows_per_page - 1 + if (end > n_genes) { + end <- n_genes + } + if (end - start + 1 < 8) { + graph_heights <- c(rep(c(40), end - start + 1), 10, rep(c(40), 8 - (end - start + 1))) + } + first_plot_list <- lapply(per_gene_readmap[start:end], function(x) update(useOuterStrips(plot_unit(x, par.settings = par_settings_firstplot), strip.left = strip.custom(par.strip.text = list(cex = 0.5))))) + plot.list <- rbind(first_plot_list) + args_list <- c(plot.list, list(nrow = rows_per_page + 1, ncol = 1, heights = unit(graph_heights, rep("mm", 9)), + top = textGrob(title_first_method[[args$first_plot_method]], gp = gpar(cex = 1), vjust = 0, just = "top"), + left = textGrob(legend_first_method[[args$first_plot_method]], gp = gpar(cex = 1), vjust = 0, hjust = 0, x = 1, y = (-0.41 / 7) * (end - start - (6.23 / 0.41)), rot = 90), + sub = textGrob(bottom_first_method[[args$first_plot_method]], gp = gpar(cex = 1), just = "bottom", vjust = 2) ) ) do.call(grid.arrange, args_list) } - devname=dev.off() + devname <- dev.off() } # main -if (args$extra_plot_method != '') { double_plot() } -if (args$extra_plot_method == '' & !exists('global', where=args)) { +if (args$extra_plot_method != "") { + double_plot() +} +if (args$extra_plot_method == "" & !exists("global", where = args)) { single_plot() } -if (exists('global', where=args)) { - pdf(file=args$output, paper="special", height=11.69) - Table <- within(Table, Counts[Polarity=="R"] <- abs(Counts[Polarity=="R"])) # retropedalage +if (exists("global", where = args)) { + pdf(file = args$output, paper = "special", height = 11.69) + table <- within(table, Counts[Polarity == "R"] <- abs(Counts[Polarity == "R"])) library(reshape2) - ml = melt(Table, id.vars = c("Dataset", "Chromosome", "Polarity", "Size")) + ml <- melt(table, id.vars = c("Dataset", "Chromosome", "Polarity", "Size")) if (args$global == "nomerge") { - castml = dcast(ml, Dataset+Polarity+Size ~ variable, function(x) sum(x)) - castml <- within(castml, Counts[Polarity=="R"] <- (Counts[Polarity=="R"]*-1)) - bc = globalbc(castml, global="no") + castml <- dcast(ml, Dataset + Polarity + Size ~ variable, function(x) sum(x)) + castml <- within(castml, Counts[Polarity == "R"] <- (Counts[Polarity == "R"] * -1)) + bc <- globalbc(castml, global = "no") } else { - castml = dcast(ml, Dataset+Size ~ variable, function(x) sum(x)) - bc = globalbc(castml, global="yes") + castml <- dcast(ml, Dataset + Size ~ variable, function(x) sum(x)) + bc <- globalbc(castml, global = "yes") } plot(bc) - devname=dev.off() + devname <- dev.off() } -