Mercurial > repos > artbio > small_rna_maps
view small_rna_maps.r @ 11:a561a71bd7d7 draft
planemo upload for repository https://github.com/ARTbio/tools-artbio/tree/master/tools/small_rna_maps commit c24bbb6d53574eb1c1eb8d219cf2a39a9ed5b3ff
author | artbio |
---|---|
date | Tue, 06 Mar 2018 06:11:55 -0500 |
parents | a96e6a7df2b7 |
children | d33263e6e812 |
line wrap: on
line source
## Setup R error handling to go to stderr options( show.error.messages=F, error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) options(warn = -1) library(RColorBrewer) library(lattice) library(latticeExtra) library(grid) library(gridExtra) library(optparse) option_list <- list( make_option(c("-f", "--first_dataframe"), type="character", help="path to first dataframe"), make_option(c("-e", "--extra_dataframe"), type="character", help="path to additional dataframe"), make_option(c("-n", "--normalization"), type="character", help="space-separated normalization/size factors"), make_option("--first_plot_method", type = "character", help="How additional data should be plotted"), make_option("--extra_plot_method", type = "character", help="How additional data should be plotted"), make_option("--global", type = "character", help="data should be plotted as global size distribution"), make_option("--output_pdf", type = "character", help="path to the pdf file with plots") ) parser <- OptionParser(usage = "%prog [options] file", option_list = option_list) args = parse_args(parser) # data frames implementation ## first table Table = read.delim(args$first_dataframe, header=T, row.names=NULL) if (args$first_plot_method == "Counts" | args$first_plot_method == "Size") { Table <- within(Table, Counts[Polarity=="R"] <- (Counts[Polarity=="R"]*-1)) } n_samples=length(unique(Table$Dataset)) samples = unique(Table$Dataset) if (args$normalization != "") { norm_factors = as.numeric(unlist(strsplit(args$normalization, " "))) } else { norm_factors = rep(1, n_samples) } if (args$first_plot_method == "Counts" | args$first_plot_method == "Size" | args$first_plot_method == "Coverage") { i = 1 for (sample in samples) { Table[, length(Table)][Table$Dataset==sample] <- Table[, length(Table)][Table$Dataset==sample]*norm_factors[i] i = i + 1 } } genes=unique(Table$Chromosome) per_gene_readmap=lapply(genes, function(x) subset(Table, Chromosome==x)) per_gene_limit=lapply(genes, function(x) c(1, unique(subset(Table, Chromosome==x)$Chrom_length)) ) n_genes=length(per_gene_readmap) # second table if (args$extra_plot_method != '') { ExtraTable=read.delim(args$extra_dataframe, header=T, row.names=NULL) if (args$extra_plot_method == "Counts" | args$extra_plot_method=='Size') { ExtraTable <- within(ExtraTable, Counts[Polarity=="R"] <- (Counts[Polarity=="R"]*-1)) } if (args$extra_plot_method == "Counts" | args$extra_plot_method == "Size" | args$extra_plot_method == "Coverage") { i = 1 for (sample in samples) { ExtraTable[, length(ExtraTable)][ExtraTable$Dataset==sample] <- ExtraTable[, length(ExtraTable)][ExtraTable$Dataset==sample]*norm_factors[i] i = i + 1 } } per_gene_size=lapply(genes, function(x) subset(ExtraTable, Chromosome==x)) } ## functions globalbc = function(df, global="", ...) { if (global == "yes") { bc <- barchart(Counts~as.factor(Size)|factor(Dataset, levels=unique(Dataset)), data = df, origin = 0, horizontal=FALSE, col=c("darkblue"), scales=list(y=list(tick.number=4, rot=90, relation="free", cex=0.5, alternating=T), x=list(rot=0, cex=0.6, tck=0.5, alternating=c(3,3))), xlab=list(label=bottom_first_method[[args$first_plot_method]], cex=.85), ylab=list(label=legend_first_method[[args$first_plot_method]], cex=.85), main=title_first_method[[args$first_plot_method]], layout = c(2, 6), newpage=T, as.table=TRUE, aspect=0.5, strip = strip.custom(par.strip.text = list(cex = 1), which.given=1, bg="lightblue"), ... ) } else { bc <- barchart(Counts~as.factor(Size)|factor(Dataset, levels=unique(Dataset)), data = df, origin = 0, horizontal=FALSE, group=Polarity, stack=TRUE, col=c('red', 'blue'), scales=list(y=list(tick.number=4, rot=90, relation="free", cex=0.5, alternating=T), x=list(rot=0, cex=0.6, tck=0.5, alternating=c(3,3))), xlab=list(label=bottom_first_method[[args$first_plot_method]], cex=.85), ylab=list(label=legend_first_method[[args$first_plot_method]], cex=.85), main=title_first_method[[args$first_plot_method]], layout = c(2, 6), newpage=T, as.table=TRUE, aspect=0.5, strip = strip.custom(par.strip.text = list(cex = 1), which.given=1, bg="lightblue"), ... ) } return(bc) } plot_unit = function(df, method=args$first_plot_method, ...) { if (method == 'Counts') { p = xyplot(Counts~Coordinate|factor(Dataset, levels=unique(Dataset))+factor(Chromosome, levels=unique(Chromosome)), data=df, type='h', lwd=1.5, scales= list(relation="free", x=list(rot=0, cex=0.7, axs="i", tck=0.5), y=list(tick.number=4, rot=90, cex=0.7)), xlab=NULL, main=NULL, ylab=NULL, as.table=T, origin = 0, horizontal=FALSE, group=Polarity, col=c("red","blue"), par.strip.text = list(cex=0.7), ...) } else if (method != "Size") { p = xyplot(eval(as.name(method))~Coordinate|factor(Dataset, levels=unique(Dataset))+factor(Chromosome, levels=unique(Chromosome)), data=df, type='p', pch=19, cex=0.35, scales= list(relation="free", x=list(rot=0, cex=0.7, axs="i", tck=0.5), y=list(tick.number=4, rot=90, cex=0.7)), xlab=NULL, main=NULL, ylab=NULL, as.table=T, origin = 0, horizontal=FALSE, group=Polarity, col=c("red","blue"), par.strip.text = list(cex=0.7), ...) } else { p = barchart(Counts~as.factor(Size)|factor(Dataset, levels=unique(Dataset))+Chromosome, data = df, origin = 0, horizontal=FALSE, group=Polarity, stack=TRUE, col=c('red', 'blue'), scales=list(y=list(tick.number=4, rot=90, relation="free", cex=0.7), x=list(rot=0, cex=0.7, axs="i", tck=0.5)), xlab = NULL, ylab = NULL, main = NULL, as.table=TRUE, par.strip.text = list(cex=0.6), ...) } combineLimits(p) } ## function parameters #par.settings.firstplot = list(layout.heights=list(top.padding=11, bottom.padding = -14)) #par.settings.secondplot=list(layout.heights=list(top.padding=11, bottom.padding = -15), strip.background=list(col=c("lavender","deepskyblue"))) par.settings.firstplot = list(layout.heights=list(top.padding=-2, bottom.padding=-2)) par.settings.secondplot=list(layout.heights=list(top.padding=-1, bottom.padding=-1), strip.background=list(col=c("lavender","deepskyblue"))) par.settings.single_plot=list(strip.background = list(col = c("lightblue", "lightgreen"))) title_first_method = list(Counts="Read Counts", Coverage="Coverage depths", Median="Median sizes", Mean="Mean sizes", Size="Size Distributions") title_extra_method = list(Counts="Read Counts", Coverage="Coverage depths", Median="Median sizes", Mean="Mean sizes", Size="Size Distributions") legend_first_method =list(Counts="Read count", Coverage="Coverage depth", Median="Median size", Mean="Mean size", Size="Read count") legend_extra_method =list(Counts="Read count", Coverage="Coveragedepth", Median="Median size", Mean="Mean size", Size="Read count") bottom_first_method =list(Counts="Coordinates (nbre of bases)",Coverage="Coordinates (nbre of bases)", Median="Coordinates (nbre of bases)", Mean="Coordinates (nbre of bases)", Size="Sizes of reads") bottom_extra_method =list(Counts="Coordinates (nbre of bases)",Coverage="Coordinates (nbre of bases)", Median="Coordinates (nbre of bases)", Mean="Coordinates (nbre of bases)", Size="Sizes of reads") ## Plotting Functions double_plot <- function(...) { page_height = 15 rows_per_page = 10 graph_heights=c(40,30,40,30,40,30,40,30,40,30,10) if (n_samples > 4) {page_width = 8.2677*n_samples/4} else {page_width = 2.3*n_samples +2.5} pdf(file=args$output_pdf, paper="special", height=page_height, width=page_width) for (i in seq(1,n_genes,rows_per_page/2)) { start=i end=i+rows_per_page/2-1 if (end>n_genes) {end=n_genes} if (end-start+1 < 5) {graph_heights=c(rep(c(40,30),end-start+1),10,rep(c(40,30),5-(end-start+1)))} first_plot.list = lapply(per_gene_readmap[start:end], function(x) plot_unit(x, strip=FALSE, par.settings=par.settings.firstplot)) second_plot.list = lapply(per_gene_size[start:end], function(x) plot_unit(x, method=args$extra_plot_method, par.settings=par.settings.secondplot)) plot.list=rbind(second_plot.list, first_plot.list) args_list=c(plot.list, list( nrow=rows_per_page+1, ncol=1, heights=unit(graph_heights, rep("mm", 11)), top=textGrob(paste(title_first_method[[args$first_plot_method]], "and", title_extra_method[[args$extra_plot_method]]), gp=gpar(cex=1), vjust=0, just="top"), left=textGrob(paste(legend_first_method[[args$first_plot_method]], "/", legend_extra_method[[args$extra_plot_method]]), gp=gpar(cex=1), just=0.675*(end-start-(2.2*(4/2.7))),vjust=2, rot=90), sub=textGrob(paste(bottom_first_method[[args$first_plot_method]], "/", bottom_extra_method[[args$extra_plot_method]]), gp=gpar(cex=1), just="bottom", vjust=2) ) ) do.call(grid.arrange, args_list) } devname=dev.off() } single_plot <- function(...) { width = 8.2677 * n_samples / 2 rows_per_page=8 graph_heights=c(rep(40,8),10) pdf(file=args$output_pdf, paper="special", height=15, width=width) for (i in seq(1,n_genes,rows_per_page)) { start=i end=i+rows_per_page-1 if (end>n_genes) {end=n_genes} if (end-start+1 < 8) {graph_heights=c(rep(c(40),end-start+1),10,rep(c(40),8-(end-start+1)))} first_plot.list = lapply(per_gene_readmap[start:end], function(x) plot_unit(x, par.settings=par.settings.firstplot)) plot.list=rbind(first_plot.list) args_list=c(plot.list, list( nrow=rows_per_page+1, ncol=1, heights=unit(graph_heights, rep("mm", 9)), top=textGrob(title_first_method[[args$first_plot_method]], gp=gpar(cex=1), vjust=0, just="top"), left=textGrob(legend_first_method[[args$first_plot_method]], gp=gpar(cex=1), just=(6.4/7)*(end-start-(6.2*(7/6.4))),vjust=2, rot=90), sub=textGrob(bottom_first_method[[args$first_plot_method]], gp=gpar(cex=1), just="bottom", vjust=2) ) ) do.call(grid.arrange, args_list) } devname=dev.off() } # main if (args$extra_plot_method != '') { double_plot() } if (args$extra_plot_method == '' & !exists('global', where=args)) { single_plot() } if (exists('global', where=args)) { pdf(file=args$output, paper="special", height=11.69) Table <- within(Table, Counts[Polarity=="R"] <- abs(Counts[Polarity=="R"])) # retropedalage library(reshape2) ml = melt(Table, id.vars = c("Dataset", "Chromosome", "Polarity", "Size")) if (args$global == "nomerge") { castml = dcast(ml, Dataset+Polarity+Size ~ variable, function(x) sum(x)) castml <- within(castml, Counts[Polarity=="R"] <- (Counts[Polarity=="R"]*-1)) bc = globalbc(castml, global="no") } else { castml = dcast(ml, Dataset+Size ~ variable, function(x) sum(x)) bc = globalbc(castml, global="yes") } plot(bc) devname=dev.off() }