Mercurial > repos > artbio > small_rna_maps
view small_rna_maps.py @ 17:b28dcd4051e8 draft
planemo upload for repository https://github.com/ARTbio/tools-artbio/tree/master/tools/small_rna_maps commit 16f15e5ab2b79590a8ae410f76434aa6690c1fc4
author | artbio |
---|---|
date | Thu, 15 Nov 2018 12:29:57 -0500 |
parents | 600e2498bd21 |
children | 2c95c899d0a4 |
line wrap: on
line source
import argparse from collections import defaultdict import numpy import pysam def Parser(): the_parser = argparse.ArgumentParser() the_parser.add_argument('--inputs', dest='inputs', required=True, nargs='+', help='list of input BAM files') the_parser.add_argument('--minsize', dest='minsize', type=int, default=0, help='minimal size of reads') the_parser.add_argument('--maxsize', dest='maxsize', type=int, default=10000, help='maximal size of reads') the_parser.add_argument('--cluster', dest='cluster', type=int, default=0, help='clustering distance') the_parser.add_argument('--sample_names', dest='sample_names', required=True, nargs='+', help='list of sample names') the_parser.add_argument('--outputs', nargs='+', action='store', help='list of two output paths (only two)') the_parser.add_argument('-M', '--plot_methods', nargs='+', action='store', help='list of 2 plot methods (only two) among:\ Counts, Max, Mean, Median, Coverage and Size') the_parser.add_argument('--nostrand', action='store_true', help='Consider reads regardless their polarity') args = the_parser.parse_args() return args class Map: def __init__(self, bam_file, sample, minsize, maxsize, cluster, nostrand): self.sample_name = sample self.minsize = minsize self.maxsize = maxsize self.cluster = cluster if not nostrand: self.nostrand = False else: self.nostrand = True self.bam_object = pysam.AlignmentFile(bam_file, 'rb') self.chromosomes = dict(zip(self.bam_object.references, self.bam_object.lengths)) self.map_dict = self.create_map(self.bam_object, self.minsize, self.maxsize, self.nostrand) if self.cluster: self.map_dict = self.tile_map(self.map_dict, self.cluster) def create_map(self, bam_object, minsize, maxsize, nostrand=False): ''' Returns a map_dictionary {(chromosome,read_position,polarity): [read_length, ...]} ''' map_dictionary = defaultdict(list) for chrom in self.chromosomes: # get empty value for start and end of each chromosome map_dictionary[(chrom, 1, 'F')] = [] map_dictionary[(chrom, self.chromosomes[chrom], 'F')] = [] if not nostrand: for read in bam_object.fetch(chrom): positions = read.positions # a list of covered positions if read.is_reverse: map_dictionary[(chrom, positions[-1]+1, 'R')].append( read.query_alignment_length) else: map_dictionary[(chrom, positions[0]+1, 'F')].append( read.query_alignment_length) else: for read in bam_object.fetch(chrom): positions = read.positions # a list of covered positions if read.is_reverse: map_dictionary[(chrom, positions[-1]+1, 'F')].append( read.query_alignment_length) else: map_dictionary[(chrom, positions[0]+1, 'F')].append( read.query_alignment_length) return map_dictionary def grouper(self, iterable, clust_distance): prev = None group = [] for item in iterable: if not prev or item - prev <= clust_distance: group.append(item) else: yield group group = [item] prev = item if group: yield group def tile_map(self, map_dic, clust_distance): ''' takes a map_dictionary {(chromosome,read_position,polarity): [read_length, ...]} and returns a map_dictionary with structure: {(chromosome,read_position,polarity): ([read_length, ...], [start_clust, end_clust])} ''' clustered_dic = defaultdict(list) for chrom in self.chromosomes: F_chrom_coord = [] R_chrom_coord = [] for key in map_dic: if key[0] == chrom and key[2] == 'F': F_chrom_coord.append(key[1]) elif key[0] == chrom and key[2] == 'R': R_chrom_coord.append(key[1]) F_chrom_coord = list(set(F_chrom_coord)) R_chrom_coord = list(set(R_chrom_coord)) F_chrom_coord.sort() R_chrom_coord.sort() F_clust_values = [i for i in self.grouper(F_chrom_coord, clust_distance)] F_clust_keys = [(i[-1]+i[0])/2 for i in F_clust_values] R_clust_values = [i for i in self.grouper(R_chrom_coord, clust_distance)] R_clust_keys = [(i[-1]+i[0])/2 for i in R_clust_values] # now 2 dictionnaries (F and R) with structure: # {centered_coordinate: [coord1, coord2, coord3, ..]} F_clust_dic = dict(zip(F_clust_keys, F_clust_values)) R_clust_dic = dict(zip(R_clust_keys, R_clust_values)) for centcoor in F_clust_dic: accumulator = [] for coor in F_clust_dic[centcoor]: accumulator.extend(map_dic[(chrom, coor, 'F')]) clustered_dic[(chrom, centcoor, 'F')] = [len(accumulator), [ F_clust_dic[centcoor][0], F_clust_dic[centcoor][-1]]] for centcoor in R_clust_dic: accumulator = [] for coor in R_clust_dic[centcoor]: accumulator.extend(map_dic[(chrom, coor, 'R')]) clustered_dic[(chrom, centcoor, 'R')] = [len(accumulator), [ R_clust_dic[centcoor][0], R_clust_dic[centcoor][-1]]] return clustered_dic def compute_readcount(self, map_dictionary, out): ''' takes a map_dictionary as input and writes a readmap_dictionary {(chromosome,read_position,polarity): number_of_reads} in an open file handler out ''' readmap_dictionary = dict() for key in map_dictionary: readmap_dictionary[key] = len(map_dictionary[key]) self.write_table(readmap_dictionary, out) def compute_max(self, map_dictionary, out): ''' takes a map_dictionary as input and writes a max_dictionary {(chromosome,read_position,polarity): max_of_number_of_read_at_any_position} Not clear this function is still required ''' merge_keylist = [(i[0], 0) for i in map_dictionary.keys()] max_dictionary = dict(merge_keylist) for key in map_dictionary: if len(map_dictionary[key]) > max_dictionary[key[0]]: max_dictionary[key[0]] = len(map_dictionary[key]) self.write_table(max_dictionary, out) def compute_mean(self, map_dictionary, out): ''' takes a map_dictionary as input and returns a mean_dictionary {(chromosome,read_position,polarity): mean_value_of_reads} ''' mean_dictionary = dict() for key in map_dictionary: if len(map_dictionary[key]) == 0: mean_dictionary[key] = 0 else: mean_dictionary[key] = round(numpy.mean(map_dictionary[key]), 1) self.write_table(mean_dictionary, out) def compute_median(self, map_dictionary, out): ''' takes a map_dictionary as input and returns a mean_dictionary {(chromosome,read_position,polarity): mean_value_of_reads} ''' median_dictionary = dict() for key in map_dictionary: if len(map_dictionary[key]) == 0: median_dictionary[key] = 0 else: median_dictionary[key] = numpy.median(map_dictionary[key]) self.write_table(median_dictionary, out) def compute_coverage(self, map_dictionary, out, quality=15): ''' takes a map_dictionary as input and returns a coverage_dictionary {(chromosome,read_position,polarity): coverage} ''' coverage_dictionary = dict() for chrom in self.chromosomes: coverage_dictionary[(chrom, 1, 'F')] = 0 coverage_dictionary[(chrom, self.chromosomes[chrom], 'F')] = 0 for read in self.bam_object.fetch(chrom): positions = read.positions # a list of covered positions for pos in positions: if not map_dictionary[(chrom, pos+1, 'F')]: map_dictionary[(chrom, pos+1, 'F')] = [] for key in map_dictionary: coverage = self.bam_object.count_coverage( reference=key[0], start=key[1]-1, end=key[1], quality_threshold=quality) """ Add the 4 coverage values """ coverage = [sum(x) for x in zip(*coverage)] coverage_dictionary[key] = coverage[0] self.write_table(coverage_dictionary, out) def compute_size(self, map_dictionary, out): ''' Takes a map_dictionary and returns a dictionary of sizes: {chrom: {polarity: {size: nbre of reads}}} ''' size_dictionary = defaultdict(lambda: defaultdict( lambda: defaultdict(int))) # to track empty chromosomes for chrom in self.chromosomes: if self.bam_object.count(chrom) == 0: size_dictionary[chrom]['F'][10] = 0 for key in map_dictionary: for size in map_dictionary[key]: size_dictionary[key[0]][key[2]][size] += 1 self.write_size_table(size_dictionary, out) def write_table(self, mapdict, out): ''' Writer of a tabular file Dataset, Chromosome, Chrom_length, Coordinate, Polarity, <some mapped value> out is an *open* file handler ''' for key in sorted(mapdict): line = [self.sample_name, key[0], self.chromosomes[key[0]], key[1], key[2], mapdict[key]] line = [str(i) for i in line] out.write('\t'.join(line) + '\n') def write_size_table(self, sizedic, out): ''' Writer of a tabular file Dataset, Chromosome, Chrom_length, <category (size)>, <some value> out is an *open* file handler ''' for chrom in sorted(sizedic): sizes = sizedic[chrom]['F'].keys() sizes.extend(sizedic[chrom]['R'].keys()) for polarity in sorted(sizedic[chrom]): for size in range(min(sizes), max(sizes)+1): try: line = [self.sample_name, chrom, polarity, size, sizedic[chrom][polarity][size]] except KeyError: line = [self.sample_name, chrom, polarity, size, 0] line = [str(i) for i in line] out.write('\t'.join(line) + '\n') def write_cluster_table(self, clustered_dic, out): ''' Writer of a tabular file Dataset, Chromosome, Chrom_length, Coordinate, Polarity, <some mapped value> out is an *open* file handler ''' for key in sorted(clustered_dic): start = clustered_dic[key][1][0] end = clustered_dic[key][1][1] size = end - start + 1 density = float(clustered_dic[key][0]) / size line = [self.sample_name, key[0], self.chromosomes[key[0]], key[1], key[2], clustered_dic[key][0], str(start) + "-" + str(end), str(size), str(density)] line = [str(i) for i in line] out.write('\t'.join(line) + '\n') def main(inputs, samples, methods, outputs, minsize, maxsize, cluster, nostrand): for method, output in zip(methods, outputs): out = open(output, 'w') if method == 'Size': header = ["Dataset", "Chromosome", "Polarity", method, "Counts"] elif cluster: header = ["Dataset", "Chromosome", "Chrom_length", "Coordinate", "Polarity", method, "Start-End", "Cluster Size", "density"] else: header = ["Dataset", "Chromosome", "Chrom_length", "Coordinate", "Polarity", method] out.write('\t'.join(header) + '\n') for input, sample in zip(inputs, samples): mapobj = Map(input, sample, minsize, maxsize, cluster, nostrand) token = {"Counts": mapobj.compute_readcount, "Max": mapobj.compute_max, "Mean": mapobj.compute_mean, "Median": mapobj.compute_median, "Coverage": mapobj.compute_coverage, "Size": mapobj.compute_size, "cluster": mapobj.write_cluster_table} if cluster: token["cluster"](mapobj.map_dict, out) else: token[method](mapobj.map_dict, out) # mapobj.compute_coverage(mapobj.map_dict, out) out.close() if __name__ == "__main__": args = Parser() # if identical sample names if len(set(args.sample_names)) != len(args.sample_names): args.sample_names = [name + '_' + str(i) for i, name in enumerate(args.sample_names)] main(args.inputs, args.sample_names, args.plot_methods, args.outputs, args.minsize, args.maxsize, args.cluster, args.nostrand)