Mercurial > repos > astroteam > hess_astro_tool
diff Image.py @ 0:02e4bb4fa10c draft
planemo upload for repository https://github.com/esg-epfl-apc/tools-astro/tree/main/tools commit 2991f65b25d4e6d1b69458603fce917adff40f94
author | astroteam |
---|---|
date | Mon, 19 Feb 2024 10:56:44 +0000 (17 months ago) |
parents | |
children | 593c4b45eda5 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Image.py Mon Feb 19 10:56:44 2024 +0000 @@ -0,0 +1,184 @@ +#!/usr/bin/env python +# coding: utf-8 + +# flake8: noqa + +import json +import os +import shutil + +import matplotlib.pyplot as plt +import numpy as np +from astropy import wcs +from astropy.coordinates import SkyCoord +from astropy.io import fits +from astropy.time import Time +from numpy import cos, pi +from oda_api.data_products import ImageDataProduct, PictureProduct +from oda_api.json import CustomJSONEncoder + +if os.path.exists("hess_dl3_dr1.tar.gz") == False: + get_ipython().system( # noqa: F821 + "wget https://zenodo.org/record/1421099/files/hess_dl3_dr1.tar.gz" + ) + get_ipython().system("tar -zxvf hess_dl3_dr1.tar.gz") # noqa: F821 + +src_name = "Crab" # http://odahub.io/ontology#AstrophysicalObject +RA = 83.628700 # http://odahub.io/ontology#PointOfInterestRA +DEC = 22.014700 # http://odahub.io/ontology#PointOfInterestDEC +T1 = "2000-10-09T13:16:00.0" # http://odahub.io/ontology#StartTime +T2 = "2022-10-10T13:16:00.0" # http://odahub.io/ontology#EndTime +Radius = 2.5 # http://odahub.io/ontology#AngleDegrees +pixsize = ( + 0.1 # http://odahub.io/ontology#AngleDegrees ; oda:label "Pixel size" +) +Emin = 100.0 # http://odahub.io/ontology#Energy_GeV +Emax = 10000.0 # http://odahub.io/ontology#Energy_GeV + +_galaxy_wd = os.getcwd() + +with open("inputs.json", "r") as fd: + inp_dic = json.load(fd) +if "_data_product" in inp_dic.keys(): + inp_pdic = inp_dic["_data_product"] +else: + inp_pdic = inp_dic + +for vn, vv in inp_pdic.items(): + if vn != "_selector": + globals()[vn] = type(globals()[vn])(vv) + +T1 = Time(T1, format="isot", scale="utc").mjd +T2 = Time(T2, format="isot", scale="utc").mjd +message = "" +RA_pnts = [] +DEC_pnts = [] +DL3_files = [] +OBSIDs = [] +Tstart = [] +Tstop = [] +flist = os.listdir("data") +for f in flist: + if f[-7:] == "fits.gz": + DL3_files.append(f) + OBSIDs.append(int(f[20:26])) + hdul = fits.open("data/" + f) + RA_pnts.append(float(hdul[1].header["RA_PNT"])) + DEC_pnts.append(float(hdul[1].header["DEC_PNT"])) + Tstart.append( + Time( + hdul[1].header["DATE-OBS"] + "T" + hdul[1].header["TIME-OBS"], + format="isot", + scale="utc", + ).mjd + ) + Tstop.append( + Time( + hdul[1].header["DATE-END"] + "T" + hdul[1].header["TIME-END"], + format="isot", + scale="utc", + ).mjd + ) + hdul.close() + +Coords_s = SkyCoord(RA, DEC, unit="degree") +COORDS_pnts = SkyCoord(RA_pnts, DEC_pnts, unit="degree") +seps = COORDS_pnts.separation(Coords_s).deg + +mask = np.where((seps < Radius) & (Tstart > T1) & (Tstop < T2))[0] +OBSlist = [] +for i in mask: + OBSlist.append(DL3_files[i]) +if len(OBSlist) == 0: + message = "No data found" + raise RuntimeError("No data found") +message + +cdec = cos(DEC * pi / 180.0) +Npix = int(4 * Radius / pixsize) + 1 +RA_bins = np.linspace(RA - Radius / cdec, RA + Radius / cdec, Npix + 1) +DEC_bins = np.linspace(DEC - Radius, DEC + Radius, Npix + 1) +image = np.zeros((Npix, Npix)) +for f in OBSlist: + hdul = fits.open("data/" + f) + ev = hdul["EVENTS"].data + ev_ra = ev["RA"] + ev_dec = ev["DEC"] + ev_en = ev["ENERGY"] + ev_time = ev["TIME"] + h = np.histogram2d(ev_ra, ev_dec, bins=[RA_bins, DEC_bins]) + image += h[0] + hdul.close() + +plt.imshow( + np.flip(image, axis=1), + extent=(RA_bins[-1], RA_bins[0], DEC_bins[0], DEC_bins[-1]), + origin="lower", +) +plt.colorbar() + +plt.xlabel("RA, degrees") +plt.ylabel("DEC,degrees") +plt.savefig("Image.png", format="png") + +# Create a new WCS object. The number of axes must be set +# from the start +w = wcs.WCS(naxis=2) + +# Set up an "Airy's zenithal" projection +# Vector properties may be set with Python lists, or Numpy arrays +w.wcs.crpix = [Npix / 2.0, Npix / 2.0] +w.wcs.cdelt = np.array([pixsize / cdec, pixsize]) +w.wcs.crval = [RA, DEC] +w.wcs.ctype = ["RA---AIR", "DEC--AIR"] +w.wcs.set_pv([(2, 1, 45.0)]) + +# Now, write out the WCS object as a FITS header +header = w.to_header() + +# header is an astropy.io.fits.Header object. We can use it to create a new +# PrimaryHDU and write it to a file. +hdu = fits.PrimaryHDU(image, header=header) +hdu.writeto("Image.fits", overwrite=True) +hdu = fits.open("Image.fits") +im = hdu[0].data +from astropy.wcs import WCS + +wcs = WCS(hdu[0].header) +plt.subplot(projection=wcs) +plt.imshow(im, origin="lower") +plt.grid(color="white", ls="solid") +plt.xlabel("RA") +plt.ylabel("Dec") + +bin_image = PictureProduct.from_file("Image.png") +fits_image = ImageDataProduct.from_fits_file("Image.fits") + +picture = bin_image # http://odahub.io/ontology#ODAPictureProduct +image = fits_image # http://odahub.io/ontology#Image + +# output gathering +_galaxy_meta_data = {} +_oda_outs = [] +_oda_outs.append(("out_Image_picture", "picture_galaxy.output", picture)) +_oda_outs.append(("out_Image_image", "image_galaxy.output", image)) + +for _outn, _outfn, _outv in _oda_outs: + _galaxy_outfile_name = os.path.join(_galaxy_wd, _outfn) + if isinstance(_outv, str) and os.path.isfile(_outv): + shutil.move(_outv, _galaxy_outfile_name) + _galaxy_meta_data[_outn] = {"ext": "_sniff_"} + elif getattr(_outv, "write_fits_file", None): + _outv.write_fits_file(_galaxy_outfile_name) + _galaxy_meta_data[_outn] = {"ext": "fits"} + elif getattr(_outv, "write_file", None): + _outv.write_file(_galaxy_outfile_name) + _galaxy_meta_data[_outn] = {"ext": "_sniff_"} + else: + with open(_galaxy_outfile_name, "w") as fd: + json.dump(_outv, fd, cls=CustomJSONEncoder) + _galaxy_meta_data[_outn] = {"ext": "json"} + +with open(os.path.join(_galaxy_wd, "galaxy.json"), "w") as fd: + json.dump(_galaxy_meta_data, fd) +print("*** Job finished successfully ***")