Mercurial > repos > astroteam > plot_tools_astro_tool
diff spectrum.py @ 0:2b1759ccaa8b draft default tip
planemo upload for repository https://github.com/esg-epfl-apc/tools-astro/tree/main/tools commit f28a8cb73a7f3053eac92166867a48b3d4af28fd
author | astroteam |
---|---|
date | Fri, 25 Apr 2025 21:48:27 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/spectrum.py Fri Apr 25 21:48:27 2025 +0000 @@ -0,0 +1,182 @@ +#!/usr/bin/env python +# coding: utf-8 + +#!/usr/bin/env python + +# This script is generated with nb2galaxy + +# flake8: noqa + +import json +import os +import shutil + +from oda_api.json import CustomJSONEncoder + +fn = "data.tsv" # oda:POSIXPath +skiprows = 0 # http://odahub.io/ontology#Integer +sep = "whitespace" # http://odahub.io/ontology#String ; oda:allowed_value "auto", "comma", "tab", "whitespace", "semicolon" +column = "c1" # http://odahub.io/ontology#String +weight_col = "" # http://odahub.io/ontology#String +binning = "logarithmic" # http://odahub.io/ontology#String ; oda:allowed_value "linear","logarithmic" +minval = 0 # http://odahub.io/ontology#Float +maxval = 0 # http://odahub.io/ontology#Float +nbins = 15 # http://odahub.io/ontology#Integer +xlabel = "Energy, [eV]" # http://odahub.io/ontology#String +ylabel = "Flux E^2, [eV]" # http://odahub.io/ontology#String +spec_power = 2.0 # http://odahub.io/ontology#Float + +_galaxy_wd = os.getcwd() + +with open("inputs.json", "r") as fd: + inp_dic = json.load(fd) +if "C_data_product_" in inp_dic.keys(): + inp_pdic = inp_dic["C_data_product_"] +else: + inp_pdic = inp_dic +fn = str(inp_pdic["fn"]) +skiprows = int(inp_pdic["skiprows"]) +sep = str(inp_pdic["sep"]) +column = str(inp_pdic["column"]) +weight_col = str(inp_pdic["weight_col"]) +binning = str(inp_pdic["binning"]) +minval = float(inp_pdic["minval"]) +maxval = float(inp_pdic["maxval"]) +nbins = int(inp_pdic["nbins"]) +xlabel = str(inp_pdic["xlabel"]) +ylabel = str(inp_pdic["ylabel"]) +spec_power = float(inp_pdic["spec_power"]) + +import matplotlib.pyplot as plt +import numpy as np +import pandas as pd + +separators = { + "tab": "\t", + "comma": ",", + "semicolon": ";", + "whitespace": "\s+", + "space": " ", +} + +df = None + +if sep == "auto": + for name, s in separators.items(): + try: + df = pd.read_csv(fn, sep=s, index_col=False, skiprows=skiprows) + if len(df.columns) > 2: + sep = s + print("Detected separator: ", name) + break + except Exception as e: + print("Separator ", s, " failed", e) + assert sep != "auto", "Failed to find valid separator" + +if df is None: + df = pd.read_csv(fn, sep=separators[sep], index_col=False) + +df.columns + +def read_data(df, colname, optional=False): + for i, c in enumerate(df.columns): + if colname == f"c{i+1}": + print(colname, c) + return df[c].values + elif colname == c: + print(colname, c) + return df[c].values + + assert optional, colname + " column not found" + return None + +values = read_data(df, column) +weights = read_data(df, weight_col, optional=True) +if weights is None: + weights = np.ones_like(values) + +values, weights + +from numpy import log10 + +if minval == 0: + minval = np.min(values) + +if maxval == 0: + maxval = np.max(values) + +if binning == "linear": + bins = np.linspace(minval, maxval, nbins + 1) +else: + bins = np.logspace(log10(minval), log10(maxval), nbins + 1) +bins + +bin_val, _ = np.histogram(values, weights=weights, bins=bins) +len(bin_val), len(bins) +bin_width = bins[1:] - bins[:-1] +flux = bin_val / bin_width +if binning == "linear": + spec_point = 0.5 * (bins[1:] + bins[:-1]) +else: + spec_point = np.sqrt(bins[1:] * bins[:-1]) + +plt.figure() +h = plt.plot(spec_point, flux * spec_point**spec_power) + +if binning == "logarithmic": + plt.xscale("log") + plt.yscale("log") + +plt.xlabel(xlabel) +plt.ylabel(ylabel) +plt.savefig("spectrum.png", format="png", dpi=150) + +from astropy.table import Table +from oda_api.data_products import ODAAstropyTable, PictureProduct + +names = ("bins_min", "bins_max", "flux") + +res = ODAAstropyTable(Table([bins[:-1], bins[1:], flux], names=names)) + +plot = PictureProduct.from_file("spectrum.png") + +histogram_data = res # http://odahub.io/ontology#ODAAstropyTable +histogram_picture = plot # http://odahub.io/ontology#ODAPictureProduct + +# output gathering +_galaxy_meta_data = {} +_oda_outs = [] +_oda_outs.append( + ( + "out_spectrum_histogram_data", + "histogram_data_galaxy.output", + histogram_data, + ) +) +_oda_outs.append( + ( + "out_spectrum_histogram_picture", + "histogram_picture_galaxy.output", + histogram_picture, + ) +) + +for _outn, _outfn, _outv in _oda_outs: + _galaxy_outfile_name = os.path.join(_galaxy_wd, _outfn) + if isinstance(_outv, str) and os.path.isfile(_outv): + shutil.move(_outv, _galaxy_outfile_name) + _galaxy_meta_data[_outn] = {"ext": "_sniff_"} + elif getattr(_outv, "write_fits_file", None): + _outv.write_fits_file(_galaxy_outfile_name) + _galaxy_meta_data[_outn] = {"ext": "fits"} + elif getattr(_outv, "write_file", None): + _outv.write_file(_galaxy_outfile_name) + _galaxy_meta_data[_outn] = {"ext": "_sniff_"} + else: + with open(_galaxy_outfile_name, "w") as fd: + json.dump(_outv, fd, cls=CustomJSONEncoder) + _galaxy_meta_data[_outn] = {"ext": "json"} + +with open(os.path.join(_galaxy_wd, "galaxy.json"), "w") as fd: + json.dump(_galaxy_meta_data, fd) +print("*** Job finished successfully ***")