Mercurial > repos > azomics > flowsom_cross_comp
view FlowSOMMApIndividualFCS.R @ 2:f611ded6c6df draft default tip
planemo upload for repository https://github.com/ImmPortDB/immport-galaxy-tools/tree/master/flowtools/flowsom_cross_comp commit bbff20e20dc2b9dbb40b613a0d5f16ee8132446d
author | azomics |
---|---|
date | Fri, 29 Sep 2023 07:20:00 +0000 |
parents | a1054bd1060a |
children |
line wrap: on
line source
#!/usr/bin/Rscript # Module for Galaxy # Generates FlowSOM reference tree # with FlowSOM AggregateFlowFrames ###################################################################### # Copyright (c) 2017 Northrop Grumman. # All rights reserved. ###################################################################### # # Version 1 # Cristel Thomas # # library(FlowSOM) library(flowCore) ## geometric mean from # https://stackoverflow.com/questions/2602583/geometric-mean-is-there-a-built-in gm_mean <- function(x, na_rm = TRUE) { exp(sum(log(x[x > 0]), na.rm = na_rm) / length(x)) } pretty_marker_names <- function(flow_frame) { n <- flow_frame@parameters@data[, "name"] d <- flow_frame@parameters@data[, "desc"] d[is.na(d)] <- n[is.na(d)] pretty_names <- list() if (any(grepl("#", d))) { # Support for hashtag notation: pretty_names <- gsub("#(.*)$", " (\\1)", d) } else { pretty_names <- paste(d, " <", n, ">", sep = "") } return(pretty_names) } check_markers <- function(fcsfiles, flag_ff = FALSE) { marker_check <- TRUE for (i in seq_along(fcsfiles)) { if (flag_ff) { fcs <- readRDS(fcsfiles[i]) } else { fcs <- read.FCS(fcsfiles[i], transformation = FALSE) } if (i == 1) { m1 <- as.vector(pData(parameters(fcs))$desc) } else { m2 <- as.vector(pData(parameters(fcs))$desc) if (is.na(all(m1 == m2))) { mm1 <- is.na(m1) mm2 <- is.na(m2) if (all(mm1 == mm2)) { if (!all(m1 == m2, na.rm = TRUE)) { marker_check <- FALSE } } else { marker_check <- FALSE } } else if (!all(m1 == m2)) { marker_check <- FALSE } } } if (!marker_check) { quit(save = "no", status = 13, runLast = FALSE) } } map_to_tree <- function(filenames, filepaths, flag_ff = FALSE, reftree, cluster = 10, outdir = "", flag_meta = FALSE, mfi = "mfi", stat1 = "", stat2 = "", stat3 = "", plot = "", mplot = "") { check_markers(filepaths, flag_ff) # get tree fst <- readRDS(reftree) plots <- FALSE mplots <- FALSE dir.create(outdir) if (!plot == "") { dir.create(plot) plots <- TRUE } if (!mplot == "") { dir.create(mplot) mplots <- TRUE } meta_c <- metaClustering_consensus(fst$map$codes, k = cluster, seed = 33) nb_pop <- if (flag_meta) cluster else max(fst$map$mapping[, 1]) nb_samples <- length(filepaths) nb_marker <- length(fst$prettyColnames) print_markers <- gsub(" <.*>", "", fst$prettyColnames) print_markers_ff <- append(print_markers, "Population") m_stat1 <- matrix(0, nrow = nb_samples, ncol = (nb_pop + 2)) colnames(m_stat1) <- c("FileID", "SampleName", seq_len(nb_pop)) sink(stat2) cat(print_markers, sep = "\t") cat("\tPercentage\tPopulation\tSampleName\n") sink() col_m3 <- c("Population") for (m in print_markers){ m1 <- paste(m, "mean", sep = "_") m2 <- paste(m, "median", sep = "_") m3 <- paste(m, "stdev", sep = "_") col_m3 <- append(col_m3, c(m1, m2, m3)) } col_stat3 <- c(col_m3, "Percentage_mean", "Percentage_median", "Percentage_stdev") for (i in seq_along(filepaths)) { if (flag_ff) { ff <- readRDS(filepaths[i]) } else { ff <- read.FCS(filepaths[i], transformation = FALSE) } if (i == 1) { # compare to tree markers pm <- pretty_marker_names(ff) if (!all(fst$prettyColnames %in% pm)) { quit(save = "no", status = 14, runLast = FALSE) } } fsom <- NewData(fst, ff) if (mplots) { markers <- colnames(ff) tmpmplot <- paste(filenames[i], "marker_plots.pdf", sep = "_") pdf(file.path(mplot, tmpmplot), useDingbats = FALSE, onefile = TRUE) for (marker in markers){ PlotMarker(fsom, marker) } dev.off() } if (!plot == "") { plotpath <- paste(filenames[i], "tree.png", sep = "_") png(file.path(plot, plotpath), type = "cairo", height = 800, width = 800) PlotStars(fsom, backgroundValues = as.factor(meta_c)) dev.off() } m <- matrix(0, nrow = nrow(ff), ncol = 1) s <- seq_len(nrow(ff)) if (flag_meta) { m[s, ] <- meta_c[fsom$map$mapping[, 1]] } else { m[s, ] <- fsom$map$mapping[, 1] } colnames(m) <- "FlowSOM" ff <- cbind2(ff, m) out <- exprs(ff) colnames(out) <- print_markers_ff clr_table <- paste(filenames[i], "clustered.flowclr", sep = "_") write.table(out, file = file.path(outdir, clr_table), quote = FALSE, row.names = FALSE, col.names = TRUE, sep = "\t", append = FALSE) cluster_count <- table(out[, "Population"]) cluster_prop <- prop.table(cluster_count) * 100 m1_tmp <- numeric(nb_pop) for (j in 1:nb_pop){ if (as.character(j) %in% names(cluster_count)) { m1_tmp[[j]] <- format( round(cluster_prop[[as.character(j)]], 2), nsmall = 2) } } samplename <- paste("Sample", i, sep = "") m_stat1[i, ] <- c(filenames[i], samplename, m1_tmp) # flowstat2 # Marker1 Marker2 Marker3 ... Population Percentage SampleName # MFIs for each marker # dimension ==> col = nb of markers + 3; row = nb of files * nb of clusters if (mfi == "mfi") { m2 <- aggregate(out[, 1:nb_marker], list(out[, nb_marker + 1]), mean) } else if (mfi == "mdfi") { m2 <- aggregate(out[, 1:nb_marker], list(out[, nb_marker + 1]), median) } else { m2 <- aggregate(out[, 1:nb_marker], list(out[, nb_marker + 1]), gm_mean) } m2["Percentage"] <- as.character(cluster_prop) m2["Population"] <- as.character(m2$Group.1) m2["SampleName"] <- samplename m2t <- as.matrix(m2[2:length(m2)]) write.table(m2t, file = stat2, quote = FALSE, row.names = FALSE, col.names = FALSE, sep = "\t", append = TRUE) } write.table(m_stat1, file = stat1, quote = FALSE, row.names = FALSE, col.names = TRUE, sep = "\t", append = FALSE) m2df <- read.table(stat2, sep = "\t", header = TRUE) ag <- aggregate(m2df[, 0:nb_marker + 1], list(m2df[, nb_marker + 2]), function(x) c(mn = mean(x), med = median(x), stdv = sd(x))) m3t <- as.matrix(ag) colnames(m3t) <- col_stat3 write.table(m3t, file = stat3, quote = FALSE, row.names = FALSE, col.names = TRUE, sep = "\t", append = FALSE) } flow_frame_or_fcs <- function(filenames, filepaths, reftree, cluster = 10, outdir = "", flag_meta = FALSE, mfi = "mfi", stat1 = "", stat2 = "", stat3 = "", plot = "", mplot = "") { is_fcs <- FALSE is_ff <- FALSE flag_ff <- FALSE i <- 0 for (f in filepaths){ tryCatch({ is_fcs <- isFCSfile(f) }, error = function(ex) { print(paste(ex)) }) if (!is_fcs) { tryCatch({ ff <- readRDS(f) is_ff <- TRUE }, error = function(ex) { print(paste(ex)) }) } else { i <- i + 1 } if (!is_ff && !is_fcs) { quit(save = "no", status = 10, runLast = FALSE) } } if (i == 0) { flag_ff <- TRUE } else if (!i == length(filenames)) { quit(save = "no", status = 12, runLast = FALSE) } map_to_tree(filenames, filepaths, flag_ff, reftree, cluster, outdir, flag_meta, mfi, stat1, stat2, stat3, plot, mplot) } args <- commandArgs(trailingOnly = TRUE) plot <- "" mplot <- "" m <- 8 flag_meta <- FALSE if (args[4] == "meta") { flag_meta <- TRUE } if (args[9] == "newDataTrees") { plot <- "newDataTrees" m <- m + 1 if (args[10] == "newDataMarkers") { mplot <- "newDataMarkers" m <- m + 1 } } else if (args[9] == "newDataMarkers") { mplot <- "newDataMarkers" m <- m + 1 } n <- m + 1 nb_files <- (length(args) - m) / 2 files1 <- character(nb_files) files2 <- character(nb_files) j <- 1 file_list <- args[n:length(args)] for (i in seq_along(file_list)) { if (i %% 2) { files1[[j]] <- file_list[i] files2[[j]] <- file_list[i + 1] j <- j + 1 } } flow_frame_or_fcs(files2, files1, args[1], as.numeric(args[3]), args[2], flag_meta, args[5], args[6], args[7], args[8], plot, mplot)