Mercurial > repos > bgruening > chembl
view chembl.py @ 9:a446ea7e2bc1 draft default tip
"planemo upload for repository https://github.com/chembl/chembl_webresource_client commit 7ca965e469cce3951d22c854dc7b6cb2a3a4f9f6"
author | bgruening |
---|---|
date | Tue, 23 Mar 2021 13:48:35 +0000 |
parents | a43a00845834 |
children |
line wrap: on
line source
import argparse from chembl_webresource_client.settings import Settings Settings.Instance().CACHING = False from chembl_webresource_client.new_client import new_client # noqa def open_file(filename): with open(filename) as f: return f.readline().split()[0] def get_smiles(res): """ Get a list of SMILES from function results """ smiles = set() for smi in res: try: smiles.add('{}\t{}'.format(smi['molecule_structures']['canonical_smiles'], smi['molecule_chembl_id'])) except TypeError: continue return smiles def sim_search(smiles, tanimoto): """ Return compounds which are within a Tanimoto range of the SMILES input """ similarity = new_client.similarity return similarity.filter(smiles=smiles, similarity=tanimoto).only(['molecule_structures', 'molecule_chembl_id']) def substr_search(smiles): """ Return compounds which contain the SMILES substructure input """ substructure = new_client.substructure return substructure.filter(smiles=smiles).only(['molecule_structures', 'molecule_chembl_id']) def filter_drugs(mols): """ Return only compounds which are approved drugs """ return mols.filter(max_phase=4) def filter_biotherapeutic(mols): """ Return only biotherapeutic molecules """ return mols.filter(biotherapeutic__isnull=False) def filter_nat_prod(mols): """ Return only natural products """ return mols.filter(natural_product=1) def filter_ro5(mols): """ Return only compounds with no RO5 violations """ return mols.filter(molecule_properties__num_ro5_violations=0) def main(): parser = argparse.ArgumentParser(description='Search ChEMBL database for compounds') parser.add_argument('-i', '--input', help='SMILES input') parser.add_argument('-f', '--file', help='SMILES input as file') parser.add_argument('-o', '--output', help="SMILES output") parser.add_argument('-t', '--tanimoto', type=int, help='Tanimoto similarity score') parser.add_argument('-s', '--substructure', action='store_true', help='Substructure search using the SMILES input.') parser.add_argument('-d', '--drugs', action='store_true', help='Filter approved drugs') parser.add_argument('-b', '--biotherapeutic', action='store_true', help='Filter biotherapeutic molecules') parser.add_argument('-n', '--nat-prod', action='store_true', help='Filter natural products') parser.add_argument('-r', '--ro5', action='store_true', help='Filter compounds that pass Lipinski RO5') args = parser.parse_args() if args.file: # get SMILES from file rather than -i option args.input = open_file(args.file) if len(args.input) < 5: raise IOError('SMILES must be at least 5 characters long.') if args.substructure: # specify search type: substructure or similarity mols = substr_search(args.input) else: mols = sim_search(args.input, args.tanimoto) # filter options: if args.drugs: mols = filter_drugs(mols) if args.biotherapeutic: mols = filter_biotherapeutic(mols) if args.nat_prod: mols = filter_nat_prod(mols) if args.ro5: mols = filter_ro5(mols) # get SMILES from search output mols = get_smiles(mols) # write to file with open(args.output, 'w') as f: f.write('\n'.join(mols)) if __name__ == "__main__": main()