0
|
1 #!/usr/bin/env python
|
|
2 """
|
|
3 Modified version of code examples from the chemfp project.
|
|
4 http://code.google.com/p/chem-fingerprints/
|
|
5 Thanks to Andrew Dalke of Andrew Dalke Scientific!
|
|
6 """
|
|
7
|
|
8 import chemfp
|
|
9 import sys
|
|
10 import os
|
|
11 import tempfile
|
|
12 import argparse
|
|
13 import subprocess
|
|
14 from chemfp import search
|
|
15
|
|
16 def unix_sort(results):
|
|
17 temp_unsorted = tempfile.NamedTemporaryFile(delete=False)
|
|
18 for (i,indices) in enumerate( results.iter_indices() ):
|
|
19 temp_unsorted.write('%s %s\n' % (len(indices), i))
|
|
20 temp_unsorted.close()
|
|
21 temp_sorted = tempfile.NamedTemporaryFile(delete=False)
|
|
22 temp_sorted.close()
|
|
23 p = subprocess.Popen(['sort', '-n', '-r', '-k', '1,1'], stdin=open(temp_unsorted.name), stdout=open(temp_sorted.name, 'w+'))
|
|
24 stdout, stderr = p.communicate()
|
|
25 return_code = p.returncode
|
|
26
|
|
27 if return_code:
|
|
28 sys.stdout.write(stdout)
|
|
29 sys.stderr.write(stderr)
|
|
30 sys.stderr.write("Return error code %i from command:\n" % return_code)
|
|
31 temp_sorted.close()
|
|
32 os.remove(temp_unsorted.name)
|
|
33
|
|
34 for line in open(temp_sorted.name):
|
|
35 size, fp_idx = line.strip().split()
|
|
36 yield (int(size), int(fp_idx))
|
|
37
|
|
38 os.remove(temp_sorted.name)
|
|
39
|
|
40 def butina( args ):
|
|
41 """
|
|
42 Taylor-Butina clustering from the chemfp help.
|
|
43 """
|
|
44 out = args.output_path
|
|
45 targets = chemfp.open( args.input_path, format='fps' )
|
|
46 arena = chemfp.load_fingerprints( targets )
|
|
47
|
|
48 chemfp.set_num_threads( args.processors )
|
|
49 results = search.threshold_tanimoto_search_symmetric(arena, threshold = args.tanimoto_threshold)
|
|
50 results.reorder_all("move-closest-first")
|
|
51
|
|
52 sorted_ids = unix_sort(results)
|
|
53
|
|
54 # Determine the true/false singletons and the clusters
|
|
55 true_singletons = []
|
|
56 false_singletons = []
|
|
57 clusters = []
|
|
58
|
|
59 seen = set()
|
|
60 #for (size, fp_idx, members) in results:
|
|
61 for (size, fp_idx) in sorted_ids:
|
|
62 members = results[fp_idx].get_indices()
|
|
63 #print arena.ids[ fp_idx ], [arena.ids[ m ] for m in members]
|
|
64 if fp_idx in seen:
|
|
65 # Can't use a centroid which is already assigned
|
|
66 continue
|
|
67 seen.add(fp_idx)
|
|
68
|
|
69 if size == 0:
|
|
70 # The only fingerprint in the exclusion sphere is itself
|
|
71 true_singletons.append( fp_idx )
|
|
72 continue
|
|
73
|
|
74 # Figure out which ones haven't yet been assigned
|
|
75 unassigned = set(members) - seen
|
|
76
|
|
77 if not unassigned:
|
|
78 false_singletons.append(fp_idx)
|
|
79 continue
|
|
80
|
|
81 # this is a new cluster
|
|
82 clusters.append( (fp_idx, unassigned) )
|
|
83 seen.update(unassigned)
|
|
84
|
|
85 len_cluster = len(clusters)
|
|
86 #out.write( "#%s true singletons: %s\n" % ( len(true_singletons), " ".join(sorted(arena.ids[idx] for idx in true_singletons)) ) )
|
|
87 #out.write( "#%s false singletons: %s\n" % ( len(false_singletons), " ".join(sorted(arena.ids[idx] for idx in false_singletons)) ) )
|
|
88
|
|
89 out.write( "#%s true singletons\n" % len(true_singletons) )
|
|
90 out.write( "#%s false singletons\n" % len(false_singletons) )
|
|
91 out.write( "#clusters: %s\n" % len_cluster )
|
|
92
|
|
93 # Sort so the cluster with the most compounds comes first,
|
|
94 # then by alphabetically smallest id
|
|
95 def cluster_sort_key(cluster):
|
|
96 centroid_idx, members = cluster
|
|
97 return -len(members), arena.ids[centroid_idx]
|
|
98
|
|
99 clusters.sort(key=cluster_sort_key)
|
|
100
|
|
101 for centroid_idx, members in clusters:
|
|
102 centroid_name = arena.ids[centroid_idx]
|
|
103 out.write("%s\t%s\t%s\n" % (centroid_name, len(members), " ".join(arena.ids[idx] for idx in members)))
|
|
104 #ToDo: len(members) need to be some biggest top 90% or something ...
|
|
105
|
|
106 for idx in true_singletons:
|
|
107 out.write("%s\t%s\n" % (arena.ids[idx], 0))
|
|
108
|
|
109 out.close()
|
|
110
|
|
111
|
|
112 if __name__ == "__main__":
|
|
113 parser = argparse.ArgumentParser(description="""Taylor-Butina clustering for fps files.
|
|
114 For more details please see the original publication or the chemfp documentation:
|
|
115 http://www.chemomine.co.uk/dbclus-paper.pdf
|
|
116 https://chemfp.readthedocs.org
|
|
117 """)
|
|
118
|
|
119 parser.add_argument("-i", "--input", dest="input_path",
|
|
120 required=True,
|
|
121 help="Path to the input file.")
|
|
122
|
|
123 parser.add_argument("-o", "--output", dest="output_path", type=argparse.FileType('w'),
|
|
124 default=sys.stdout,
|
|
125 help="Path to the output file.")
|
|
126
|
|
127 parser.add_argument("-t", "--threshold", dest="tanimoto_threshold", type=float,
|
|
128 default=0.8,
|
|
129 help="Tanimoto threshold [0.8]")
|
|
130
|
|
131 parser.add_argument('-p', '--processors', type=int,
|
|
132 default=4)
|
|
133
|
|
134 options = parser.parse_args()
|
|
135 butina( options )
|