view test-data/identify_primary_objects.cppipe @ 6:d3890df07463 draft default tip

planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools commit 57a0433defa3cbc37ab34fbb0ebcfaeb680db8d5
author bgruening
date Sun, 05 Nov 2023 09:29:39 +0000
parents 6f4715b8540a
children
line wrap: on
line source

CellProfiler Pipeline: http://www.cellprofiler.org
Version:3
DateRevision:319
GitHash:
ModuleCount:5
HasImagePlaneDetails:False

Images:[module_num:1|svn_version:\'Unknown\'|variable_revision_number:2|show_window:False|notes:\x5B\'To begin creating your project, use the Images module to compile a list of files and/or folders that you want to analyze. You can also specify a set of rules to include only the desired files in your selected folders.\'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False]
    :
    Filter images?:Images only
    Select the rule criteria:and (extension does isimage) (directory doesnot startwith ".")

Metadata:[module_num:2|svn_version:\'Unknown\'|variable_revision_number:4|show_window:False|notes:\x5B\'The Metadata module optionally allows you to extract information describing your images (i.e, metadata) which will be stored along with your measurements. This information can be contained in the file name and/or location, or in an external file.\'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False]
    Extract metadata?:Yes
    Metadata data type:Text
    Metadata types:{}
    Extraction method count:1
    Metadata extraction method:Extract from file/folder names
    Metadata source:File name
    Regular expression to extract from file name:(?P<field1>.*)_(?P<field2>[a-zA-Z0-9]+)_(?P<field3>[a-zA-Z0-9]+)_(?P<field4>[a-zA-Z0-9]+)
    Regular expression to extract from folder name:(?P<folderField1>.*)
    Extract metadata from:All images
    Select the filtering criteria:and (file does contain "")
    Metadata file location:
    Match file and image metadata:[]
    Use case insensitive matching?:No

NamesAndTypes:[module_num:3|svn_version:\'Unknown\'|variable_revision_number:8|show_window:False|notes:\x5B\'The NamesAndTypes module allows you to assign a meaningful name to each image by which other modules will refer to it.\'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False]
    Assign a name to:Images matching rules
    Select the image type:Grayscale image
    Name to assign these images:DNA
    Match metadata:[]
    Image set matching method:Order
    Set intensity range from:Image metadata
    Assignments count:1
    Single images count:0
    Maximum intensity:255.0
    Process as 3D?:No
    Relative pixel spacing in X:1.0
    Relative pixel spacing in Y:1.0
    Relative pixel spacing in Z:1.0
    Select the rule criteria:and (file does startwith "im")
    Name to assign these images:DNA
    Name to assign these objects:Cell
    Select the image type:Grayscale image
    Set intensity range from:Image metadata
    Select the image type:Grayscale image
    Maximum intensity:255.0

Groups:[module_num:4|svn_version:\'Unknown\'|variable_revision_number:2|show_window:False|notes:\x5B\'The Groups module optionally allows you to split your list of images into image subsets (groups) which will be processed independently of each other. Examples of groupings include screening batches, microtiter plates, time-lapse movies, etc.\'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False]
    Do you want to group your images?:Yes
    grouping metadata count:1
    Metadata category:field1

IdentifyPrimaryObjects:[module_num:5|svn_version:\'Unknown\'|variable_revision_number:13|show_window:True|notes:\x5B\'Identify the nuclei from the DNA channel.\', \'PARAMS\x3A\', \'- Typical diameter of objects (Min,Max)\', \'- Method to distinguish clumped objects\x3A Shape/None. With Shape, the distance between the 2 centers can be changed.\'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False]
    Select the input image:DNA
    Name the primary objects to be identified:Nuclei
    Typical diameter of objects, in pixel units (Min,Max):15,200
    Discard objects outside the diameter range?:Yes
    Discard objects touching the border of the image?:Yes
    Method to distinguish clumped objects:Shape
    Method to draw dividing lines between clumped objects:Shape
    Size of smoothing filter:0
    Suppress local maxima that are closer than this minimum allowed distance:7
    Speed up by using lower-resolution image to find local maxima?:Yes
    Fill holes in identified objects?:After both thresholding and declumping
    Automatically calculate size of smoothing filter for declumping?:Yes
    Automatically calculate minimum allowed distance between local maxima?:Yes
    Handling of objects if excessive number of objects identified:Continue
    Maximum number of objects:500
    Use advanced settings?:Yes
    Threshold settings version:10
    Threshold strategy:Global
    Thresholding method:Otsu
    Threshold smoothing scale:1.3488
    Threshold correction factor:0.9
    Lower and upper bounds on threshold:0.0000,1.0000
    Manual threshold:0
    Select the measurement to threshold with:None
    Two-class or three-class thresholding?:Two classes
    Assign pixels in the middle intensity class to the foreground or the background?:Foreground
    Size of adaptive window:500
    Lower outlier fraction:0.05
    Upper outlier fraction:0.05
    Averaging method:Mean
    Variance method:Standard deviation
    # of deviations:2.0
    Thresholding method:Otsu