Mercurial > repos > bgruening > create_tool_recommendation_model
view main.py @ 1:12764915e1c5 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/recommendation_training/tools/tool_recommendation_model commit edeb85d311990eabd65f3c4576fbeabc6d9165c9"
author | bgruening |
---|---|
date | Wed, 25 Sep 2019 06:42:40 -0400 |
parents | 9bf25dbe00ad |
children | 76251d1ccdcc |
line wrap: on
line source
""" Predict next tools in the Galaxy workflows using machine learning (recurrent neural network) """ import numpy as np import argparse import time # machine learning library import keras.callbacks as callbacks import extract_workflow_connections import prepare_data import optimise_hyperparameters import utils class PredictTool: @classmethod def __init__(self): """ Init method. """ @classmethod def find_train_best_network(self, network_config, reverse_dictionary, train_data, train_labels, test_data, test_labels, n_epochs, class_weights, usage_pred, compatible_next_tools): """ Define recurrent neural network and train sequential data """ print("Start hyperparameter optimisation...") hyper_opt = optimise_hyperparameters.HyperparameterOptimisation() best_params = hyper_opt.train_model(network_config, reverse_dictionary, train_data, train_labels, test_data, test_labels, class_weights) # retrieve the model and train on complete dataset without validation set model, best_params = utils.set_recurrent_network(best_params, reverse_dictionary, class_weights) # define callbacks predict_callback_test = PredictCallback(test_data, test_labels, reverse_dictionary, n_epochs, compatible_next_tools, usage_pred) # tensor_board = callbacks.TensorBoard(log_dir=log_directory, histogram_freq=0, write_graph=True, write_images=True) callbacks_list = [predict_callback_test] print("Start training on the best model...") model_fit = model.fit( train_data, train_labels, batch_size=int(best_params["batch_size"]), epochs=n_epochs, verbose=2, callbacks=callbacks_list, shuffle="batch", validation_data=(test_data, test_labels) ) train_performance = { "train_loss": np.array(model_fit.history["loss"]), "model": model, "best_parameters": best_params } # if there is test data, add more information if len(test_data) > 0: train_performance["validation_loss"] = np.array(model_fit.history["val_loss"]) train_performance["precision"] = predict_callback_test.precision train_performance["usage_weights"] = predict_callback_test.usage_weights return train_performance class PredictCallback(callbacks.Callback): def __init__(self, test_data, test_labels, reverse_data_dictionary, n_epochs, next_compatible_tools, usg_scores): self.test_data = test_data self.test_labels = test_labels self.reverse_data_dictionary = reverse_data_dictionary self.precision = list() self.usage_weights = list() self.n_epochs = n_epochs self.next_compatible_tools = next_compatible_tools self.pred_usage_scores = usg_scores def on_epoch_end(self, epoch, logs={}): """ Compute absolute and compatible precision for test data """ if len(self.test_data) > 0: precision, usage_weights = utils.verify_model(self.model, self.test_data, self.test_labels, self.reverse_data_dictionary, self.next_compatible_tools, self.pred_usage_scores) self.precision.append(precision) self.usage_weights.append(usage_weights) print("Epoch %d precision: %s" % (epoch + 1, precision)) print("Epoch %d usage weights: %s" % (epoch + 1, usage_weights)) if __name__ == "__main__": start_time = time.time() arg_parser = argparse.ArgumentParser() arg_parser.add_argument("-wf", "--workflow_file", required=True, help="workflows tabular file") arg_parser.add_argument("-tu", "--tool_usage_file", required=True, help="tool usage file") arg_parser.add_argument("-om", "--output_model", required=True, help="trained model file") # data parameters arg_parser.add_argument("-cd", "--cutoff_date", required=True, help="earliest date for taking tool usage") arg_parser.add_argument("-pl", "--maximum_path_length", required=True, help="maximum length of tool path") arg_parser.add_argument("-ep", "--n_epochs", required=True, help="number of iterations to run to create model") arg_parser.add_argument("-oe", "--optimize_n_epochs", required=True, help="number of iterations to run to find best model parameters") arg_parser.add_argument("-me", "--max_evals", required=True, help="maximum number of configuration evaluations") arg_parser.add_argument("-ts", "--test_share", required=True, help="share of data to be used for testing") arg_parser.add_argument("-vs", "--validation_share", required=True, help="share of data to be used for validation") # neural network parameters arg_parser.add_argument("-bs", "--batch_size", required=True, help="size of the tranining batch i.e. the number of samples per batch") arg_parser.add_argument("-ut", "--units", required=True, help="number of hidden recurrent units") arg_parser.add_argument("-es", "--embedding_size", required=True, help="size of the fixed vector learned for each tool") arg_parser.add_argument("-dt", "--dropout", required=True, help="percentage of neurons to be dropped") arg_parser.add_argument("-sd", "--spatial_dropout", required=True, help="1d dropout used for embedding layer") arg_parser.add_argument("-rd", "--recurrent_dropout", required=True, help="dropout for the recurrent layers") arg_parser.add_argument("-lr", "--learning_rate", required=True, help="learning rate") arg_parser.add_argument("-ar", "--activation_recurrent", required=True, help="activation function for recurrent layers") arg_parser.add_argument("-ao", "--activation_output", required=True, help="activation function for output layers") # get argument values args = vars(arg_parser.parse_args()) tool_usage_path = args["tool_usage_file"] workflows_path = args["workflow_file"] cutoff_date = args["cutoff_date"] maximum_path_length = int(args["maximum_path_length"]) trained_model_path = args["output_model"] n_epochs = int(args["n_epochs"]) optimize_n_epochs = int(args["optimize_n_epochs"]) max_evals = int(args["max_evals"]) test_share = float(args["test_share"]) validation_share = float(args["validation_share"]) batch_size = args["batch_size"] units = args["units"] embedding_size = args["embedding_size"] dropout = args["dropout"] spatial_dropout = args["spatial_dropout"] recurrent_dropout = args["recurrent_dropout"] learning_rate = args["learning_rate"] activation_recurrent = args["activation_recurrent"] activation_output = args["activation_output"] config = { 'cutoff_date': cutoff_date, 'maximum_path_length': maximum_path_length, 'n_epochs': n_epochs, 'optimize_n_epochs': optimize_n_epochs, 'max_evals': max_evals, 'test_share': test_share, 'validation_share': validation_share, 'batch_size': batch_size, 'units': units, 'embedding_size': embedding_size, 'dropout': dropout, 'spatial_dropout': spatial_dropout, 'recurrent_dropout': recurrent_dropout, 'learning_rate': learning_rate, 'activation_recurrent': activation_recurrent, 'activation_output': activation_output } # Extract and process workflows connections = extract_workflow_connections.ExtractWorkflowConnections() workflow_paths, compatible_next_tools = connections.read_tabular_file(workflows_path) # Process the paths from workflows print("Dividing data...") data = prepare_data.PrepareData(maximum_path_length, test_share) train_data, train_labels, test_data, test_labels, data_dictionary, reverse_dictionary, class_weights, usage_pred = data.get_data_labels_matrices(workflow_paths, tool_usage_path, cutoff_date, compatible_next_tools) # find the best model and start training predict_tool = PredictTool() # start training with weighted classes print("Training with weighted classes and samples ...") results_weighted = predict_tool.find_train_best_network(config, reverse_dictionary, train_data, train_labels, test_data, test_labels, n_epochs, class_weights, usage_pred, compatible_next_tools) print() print("Best parameters \n") print(results_weighted["best_parameters"]) print() utils.save_model(results_weighted, data_dictionary, compatible_next_tools, trained_model_path, class_weights) end_time = time.time() print() print("Program finished in %s seconds" % str(end_time - start_time))