Mercurial > repos > bgruening > create_tool_recommendation_model
view prepare_data.py @ 1:12764915e1c5 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/recommendation_training/tools/tool_recommendation_model commit edeb85d311990eabd65f3c4576fbeabc6d9165c9"
author | bgruening |
---|---|
date | Wed, 25 Sep 2019 06:42:40 -0400 |
parents | 9bf25dbe00ad |
children | 5b3c08710e47 |
line wrap: on
line source
""" Prepare the workflow paths to be used by downstream machine learning algorithm. The paths are divided into the test and training sets """ import os import collections import numpy as np import random import predict_tool_usage main_path = os.getcwd() class PrepareData: @classmethod def __init__(self, max_seq_length, test_data_share): """ Init method. """ self.max_tool_sequence_len = max_seq_length self.test_share = test_data_share @classmethod def process_workflow_paths(self, workflow_paths): """ Get all the tools and complete set of individual paths for each workflow """ tokens = list() raw_paths = workflow_paths raw_paths = [x.replace("\n", '') for x in raw_paths] for item in raw_paths: split_items = item.split(",") for token in split_items: if token is not "": tokens.append(token) tokens = list(set(tokens)) tokens = np.array(tokens) tokens = np.reshape(tokens, [-1, ]) return tokens, raw_paths @classmethod def create_new_dict(self, new_data_dict): """ Create new data dictionary """ reverse_dict = dict((v, k) for k, v in new_data_dict.items()) return new_data_dict, reverse_dict @classmethod def assemble_dictionary(self, new_data_dict, old_data_dictionary={}): """ Create/update tools indices in the forward and backward dictionary """ new_data_dict, reverse_dict = self.create_new_dict(new_data_dict) return new_data_dict, reverse_dict @classmethod def create_data_dictionary(self, words, old_data_dictionary={}): """ Create two dictionaries having tools names and their indexes """ count = collections.Counter(words).most_common() dictionary = dict() for word, _ in count: dictionary[word] = len(dictionary) + 1 dictionary, reverse_dictionary = self.assemble_dictionary(dictionary, old_data_dictionary) return dictionary, reverse_dictionary @classmethod def decompose_paths(self, paths, dictionary): """ Decompose the paths to variable length sub-paths keeping the first tool fixed """ sub_paths_pos = list() for index, item in enumerate(paths): tools = item.split(",") len_tools = len(tools) if len_tools <= self.max_tool_sequence_len: for window in range(1, len_tools): sequence = tools[0: window + 1] tools_pos = [str(dictionary[str(tool_item)]) for tool_item in sequence] if len(tools_pos) > 1: sub_paths_pos.append(",".join(tools_pos)) sub_paths_pos = list(set(sub_paths_pos)) return sub_paths_pos @classmethod def prepare_paths_labels_dictionary(self, dictionary, reverse_dictionary, paths, compatible_next_tools): """ Create a dictionary of sequences with their labels for training and test paths """ paths_labels = dict() random.shuffle(paths) for item in paths: if item and item not in "": tools = item.split(",") label = tools[-1] train_tools = tools[:len(tools) - 1] last_but_one_name = reverse_dictionary[int(train_tools[-1])] try: compatible_tools = compatible_next_tools[last_but_one_name].split(",") except Exception: continue if len(compatible_tools) > 0: compatible_tools_ids = [str(dictionary[x]) for x in compatible_tools] compatible_tools_ids.append(label) composite_labels = ",".join(compatible_tools_ids) train_tools = ",".join(train_tools) if train_tools in paths_labels: paths_labels[train_tools] += "," + composite_labels else: paths_labels[train_tools] = composite_labels for item in paths_labels: paths_labels[item] = ",".join(list(set(paths_labels[item].split(",")))) return paths_labels @classmethod def pad_paths(self, paths_dictionary, num_classes): """ Add padding to the tools sequences and create multi-hot encoded labels """ size_data = len(paths_dictionary) data_mat = np.zeros([size_data, self.max_tool_sequence_len]) label_mat = np.zeros([size_data, num_classes + 1]) train_counter = 0 for train_seq, train_label in list(paths_dictionary.items()): positions = train_seq.split(",") start_pos = self.max_tool_sequence_len - len(positions) for id_pos, pos in enumerate(positions): data_mat[train_counter][start_pos + id_pos] = int(pos) for label_item in train_label.split(","): label_mat[train_counter][int(label_item)] = 1.0 train_counter += 1 return data_mat, label_mat @classmethod def split_test_train_data(self, multilabels_paths): """ Split into test and train data randomly for each run """ train_dict = dict() test_dict = dict() all_paths = multilabels_paths.keys() random.shuffle(list(all_paths)) split_number = int(self.test_share * len(all_paths)) for index, path in enumerate(list(all_paths)): if index < split_number: test_dict[path] = multilabels_paths[path] else: train_dict[path] = multilabels_paths[path] return train_dict, test_dict @classmethod def verify_overlap(self, train_paths, test_paths): """ Verify the overlapping of samples in train and test data """ intersection = list(set(train_paths).intersection(set(test_paths))) print("Overlap in train and test: %d" % len(intersection)) @classmethod def get_predicted_usage(self, data_dictionary, predicted_usage): """ Get predicted usage for tools """ usage = dict() epsilon = 0.0 # index 0 does not belong to any tool usage[0] = epsilon for k, v in data_dictionary.items(): try: usg = predicted_usage[k] if usg < epsilon: usg = epsilon usage[v] = usg except Exception: usage[v] = epsilon continue return usage @classmethod def assign_class_weights(self, n_classes, predicted_usage): """ Compute class weights using usage """ class_weights = dict() class_weights[str(0)] = 0.0 for key in range(1, n_classes): u_score = predicted_usage[key] if u_score < 1.0: u_score += 1.0 class_weights[key] = np.log(u_score) return class_weights @classmethod def get_sample_weights(self, train_data, reverse_dictionary, paths_frequency): """ Compute the frequency of paths in training data """ path_weights = np.zeros(len(train_data)) for path_index, path in enumerate(train_data): sample_pos = np.where(path > 0)[0] sample_tool_pos = path[sample_pos[0]:] path_name = ",".join([reverse_dictionary[int(tool_pos)] for tool_pos in sample_tool_pos]) try: path_weights[path_index] = int(paths_frequency[path_name]) except Exception: path_weights[path_index] = 1 return path_weights @classmethod def get_data_labels_matrices(self, workflow_paths, tool_usage_path, cutoff_date, compatible_next_tools, old_data_dictionary={}): """ Convert the training and test paths into corresponding numpy matrices """ processed_data, raw_paths = self.process_workflow_paths(workflow_paths) dictionary, reverse_dictionary = self.create_data_dictionary(processed_data, old_data_dictionary) num_classes = len(dictionary) print("Raw paths: %d" % len(raw_paths)) random.shuffle(raw_paths) print("Decomposing paths...") all_unique_paths = self.decompose_paths(raw_paths, dictionary) random.shuffle(all_unique_paths) print("Creating dictionaries...") multilabels_paths = self.prepare_paths_labels_dictionary(dictionary, reverse_dictionary, all_unique_paths, compatible_next_tools) print("Complete data: %d" % len(multilabels_paths)) train_paths_dict, test_paths_dict = self.split_test_train_data(multilabels_paths) print("Train data: %d" % len(train_paths_dict)) print("Test data: %d" % len(test_paths_dict)) test_data, test_labels = self.pad_paths(test_paths_dict, num_classes) train_data, train_labels = self.pad_paths(train_paths_dict, num_classes) # Predict tools usage print("Predicting tools' usage...") usage_pred = predict_tool_usage.ToolPopularity() usage = usage_pred.extract_tool_usage(tool_usage_path, cutoff_date, dictionary) tool_usage_prediction = usage_pred.get_pupularity_prediction(usage) tool_predicted_usage = self.get_predicted_usage(dictionary, tool_usage_prediction) # get class weights using the predicted usage for each tool class_weights = self.assign_class_weights(train_labels.shape[1], tool_predicted_usage) return train_data, train_labels, test_data, test_labels, dictionary, reverse_dictionary, class_weights, tool_predicted_usage