Mercurial > repos > bgruening > create_tool_recommendation_model
view main.py @ 3:5b3c08710e47 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/recommendation_training/tools/tool_recommendation_model commit c635df659fe1835679438589ded43136b0e515c6"
author | bgruening |
---|---|
date | Sat, 09 May 2020 05:38:23 -0400 |
parents | 76251d1ccdcc |
children | afec8c595124 |
line wrap: on
line source
""" Predict next tools in the Galaxy workflows using machine learning (recurrent neural network) """ import numpy as np import argparse import time # machine learning library import tensorflow as tf from keras import backend as K import keras.callbacks as callbacks import extract_workflow_connections import prepare_data import optimise_hyperparameters import utils class PredictTool: def __init__(self, num_cpus): """ Init method. """ # set the number of cpus cpu_config = tf.ConfigProto( device_count={"CPU": num_cpus}, intra_op_parallelism_threads=num_cpus, inter_op_parallelism_threads=num_cpus, allow_soft_placement=True ) K.set_session(tf.Session(config=cpu_config)) def find_train_best_network(self, network_config, reverse_dictionary, train_data, train_labels, test_data, test_labels, n_epochs, class_weights, usage_pred, standard_connections, l_tool_freq, l_tool_tr_samples): """ Define recurrent neural network and train sequential data """ # get tools with lowest representation lowest_tool_ids = utils.get_lowest_tools(l_tool_freq) print("Start hyperparameter optimisation...") hyper_opt = optimise_hyperparameters.HyperparameterOptimisation() best_params, best_model = hyper_opt.train_model(network_config, reverse_dictionary, train_data, train_labels, test_data, test_labels, l_tool_tr_samples, class_weights) # define callbacks early_stopping = callbacks.EarlyStopping(monitor='loss', mode='min', verbose=1, min_delta=1e-1, restore_best_weights=True) predict_callback_test = PredictCallback(test_data, test_labels, reverse_dictionary, n_epochs, usage_pred, standard_connections, lowest_tool_ids) callbacks_list = [predict_callback_test, early_stopping] batch_size = int(best_params["batch_size"]) print("Start training on the best model...") train_performance = dict() trained_model = best_model.fit_generator( utils.balanced_sample_generator( train_data, train_labels, batch_size, l_tool_tr_samples ), steps_per_epoch=len(train_data) // batch_size, epochs=n_epochs, callbacks=callbacks_list, validation_data=(test_data, test_labels), verbose=2, shuffle=True ) train_performance["validation_loss"] = np.array(trained_model.history["val_loss"]) train_performance["precision"] = predict_callback_test.precision train_performance["usage_weights"] = predict_callback_test.usage_weights train_performance["published_precision"] = predict_callback_test.published_precision train_performance["lowest_pub_precision"] = predict_callback_test.lowest_pub_precision train_performance["lowest_norm_precision"] = predict_callback_test.lowest_norm_precision train_performance["train_loss"] = np.array(trained_model.history["loss"]) train_performance["model"] = best_model train_performance["best_parameters"] = best_params return train_performance class PredictCallback(callbacks.Callback): def __init__(self, test_data, test_labels, reverse_data_dictionary, n_epochs, usg_scores, standard_connections, lowest_tool_ids): self.test_data = test_data self.test_labels = test_labels self.reverse_data_dictionary = reverse_data_dictionary self.precision = list() self.usage_weights = list() self.published_precision = list() self.n_epochs = n_epochs self.pred_usage_scores = usg_scores self.standard_connections = standard_connections self.lowest_tool_ids = lowest_tool_ids self.lowest_pub_precision = list() self.lowest_norm_precision = list() def on_epoch_end(self, epoch, logs={}): """ Compute absolute and compatible precision for test data """ if len(self.test_data) > 0: usage_weights, precision, precision_pub, low_pub_prec, low_norm_prec, low_num = utils.verify_model(self.model, self.test_data, self.test_labels, self.reverse_data_dictionary, self.pred_usage_scores, self.standard_connections, self.lowest_tool_ids) self.precision.append(precision) self.usage_weights.append(usage_weights) self.published_precision.append(precision_pub) self.lowest_pub_precision.append(low_pub_prec) self.lowest_norm_precision.append(low_norm_prec) print("Epoch %d usage weights: %s" % (epoch + 1, usage_weights)) print("Epoch %d normal precision: %s" % (epoch + 1, precision)) print("Epoch %d published precision: %s" % (epoch + 1, precision_pub)) print("Epoch %d lowest published precision: %s" % (epoch + 1, low_pub_prec)) print("Epoch %d lowest normal precision: %s" % (epoch + 1, low_norm_prec)) print("Epoch %d number of test samples with lowest tool ids: %s" % (epoch + 1, low_num)) if __name__ == "__main__": start_time = time.time() arg_parser = argparse.ArgumentParser() arg_parser.add_argument("-wf", "--workflow_file", required=True, help="workflows tabular file") arg_parser.add_argument("-tu", "--tool_usage_file", required=True, help="tool usage file") arg_parser.add_argument("-om", "--output_model", required=True, help="trained model file") # data parameters arg_parser.add_argument("-cd", "--cutoff_date", required=True, help="earliest date for taking tool usage") arg_parser.add_argument("-pl", "--maximum_path_length", required=True, help="maximum length of tool path") arg_parser.add_argument("-ep", "--n_epochs", required=True, help="number of iterations to run to create model") arg_parser.add_argument("-oe", "--optimize_n_epochs", required=True, help="number of iterations to run to find best model parameters") arg_parser.add_argument("-me", "--max_evals", required=True, help="maximum number of configuration evaluations") arg_parser.add_argument("-ts", "--test_share", required=True, help="share of data to be used for testing") # neural network parameters arg_parser.add_argument("-bs", "--batch_size", required=True, help="size of the tranining batch i.e. the number of samples per batch") arg_parser.add_argument("-ut", "--units", required=True, help="number of hidden recurrent units") arg_parser.add_argument("-es", "--embedding_size", required=True, help="size of the fixed vector learned for each tool") arg_parser.add_argument("-dt", "--dropout", required=True, help="percentage of neurons to be dropped") arg_parser.add_argument("-sd", "--spatial_dropout", required=True, help="1d dropout used for embedding layer") arg_parser.add_argument("-rd", "--recurrent_dropout", required=True, help="dropout for the recurrent layers") arg_parser.add_argument("-lr", "--learning_rate", required=True, help="learning rate") # get argument values args = vars(arg_parser.parse_args()) tool_usage_path = args["tool_usage_file"] workflows_path = args["workflow_file"] cutoff_date = args["cutoff_date"] maximum_path_length = int(args["maximum_path_length"]) trained_model_path = args["output_model"] n_epochs = int(args["n_epochs"]) optimize_n_epochs = int(args["optimize_n_epochs"]) max_evals = int(args["max_evals"]) test_share = float(args["test_share"]) batch_size = args["batch_size"] units = args["units"] embedding_size = args["embedding_size"] dropout = args["dropout"] spatial_dropout = args["spatial_dropout"] recurrent_dropout = args["recurrent_dropout"] learning_rate = args["learning_rate"] num_cpus = 16 config = { 'cutoff_date': cutoff_date, 'maximum_path_length': maximum_path_length, 'n_epochs': n_epochs, 'optimize_n_epochs': optimize_n_epochs, 'max_evals': max_evals, 'test_share': test_share, 'batch_size': batch_size, 'units': units, 'embedding_size': embedding_size, 'dropout': dropout, 'spatial_dropout': spatial_dropout, 'recurrent_dropout': recurrent_dropout, 'learning_rate': learning_rate } # Extract and process workflows connections = extract_workflow_connections.ExtractWorkflowConnections() workflow_paths, compatible_next_tools, standard_connections = connections.read_tabular_file(workflows_path) # Process the paths from workflows print("Dividing data...") data = prepare_data.PrepareData(maximum_path_length, test_share) train_data, train_labels, test_data, test_labels, data_dictionary, reverse_dictionary, class_weights, usage_pred, l_tool_freq, l_tool_tr_samples = data.get_data_labels_matrices(workflow_paths, tool_usage_path, cutoff_date, compatible_next_tools, standard_connections) # find the best model and start training predict_tool = PredictTool(num_cpus) # start training with weighted classes print("Training with weighted classes and samples ...") results_weighted = predict_tool.find_train_best_network(config, reverse_dictionary, train_data, train_labels, test_data, test_labels, n_epochs, class_weights, usage_pred, standard_connections, l_tool_freq, l_tool_tr_samples) utils.save_model(results_weighted, data_dictionary, compatible_next_tools, trained_model_path, class_weights, standard_connections) end_time = time.time() print() print("Program finished in %s seconds" % str(end_time - start_time))