Mercurial > repos > bgruening > create_tool_recommendation_model
view utils.py @ 3:5b3c08710e47 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/recommendation_training/tools/tool_recommendation_model commit c635df659fe1835679438589ded43136b0e515c6"
author | bgruening |
---|---|
date | Sat, 09 May 2020 05:38:23 -0400 |
parents | 76251d1ccdcc |
children | afec8c595124 |
line wrap: on
line source
import os import numpy as np import json import h5py import random from keras import backend as K def read_file(file_path): """ Read a file """ with open(file_path, "r") as json_file: file_content = json.loads(json_file.read()) return file_content def format_tool_id(tool_link): """ Extract tool id from tool link """ tool_id_split = tool_link.split("/") tool_id = tool_id_split[-2] if len(tool_id_split) > 1 else tool_link return tool_id def set_trained_model(dump_file, model_values): """ Create an h5 file with the trained weights and associated dicts """ hf_file = h5py.File(dump_file, 'w') for key in model_values: value = model_values[key] if key == 'model_weights': for idx, item in enumerate(value): w_key = "weight_" + str(idx) if w_key in hf_file: hf_file.modify(w_key, item) else: hf_file.create_dataset(w_key, data=item) else: if key in hf_file: hf_file.modify(key, json.dumps(value)) else: hf_file.create_dataset(key, data=json.dumps(value)) hf_file.close() def weighted_loss(class_weights): """ Create a weighted loss function. Penalise the misclassification of classes more with the higher usage """ weight_values = list(class_weights.values()) weight_values.extend(weight_values) def weighted_binary_crossentropy(y_true, y_pred): # add another dimension to compute dot product expanded_weights = K.expand_dims(weight_values, axis=-1) return K.dot(K.binary_crossentropy(y_true, y_pred), expanded_weights) return weighted_binary_crossentropy def balanced_sample_generator(train_data, train_labels, batch_size, l_tool_tr_samples): while True: dimension = train_data.shape[1] n_classes = train_labels.shape[1] tool_ids = list(l_tool_tr_samples.keys()) generator_batch_data = np.zeros([batch_size, dimension]) generator_batch_labels = np.zeros([batch_size, n_classes]) for i in range(batch_size): random_toolid_index = random.sample(range(0, len(tool_ids)), 1)[0] random_toolid = tool_ids[random_toolid_index] sample_indices = l_tool_tr_samples[str(random_toolid)] random_index = random.sample(range(0, len(sample_indices)), 1)[0] random_tr_index = sample_indices[random_index] generator_batch_data[i] = train_data[random_tr_index] generator_batch_labels[i] = train_labels[random_tr_index] yield generator_batch_data, generator_batch_labels def compute_precision(model, x, y, reverse_data_dictionary, usage_scores, actual_classes_pos, topk, standard_conn, last_tool_id, lowest_tool_ids): """ Compute absolute and compatible precision """ pred_t_name = "" top_precision = 0.0 mean_usage = 0.0 usage_wt_score = list() pub_precision = 0.0 lowest_pub_prec = 0.0 lowest_norm_prec = 0.0 pub_tools = list() actual_next_tool_names = list() test_sample = np.reshape(x, (1, len(x))) # predict next tools for a test path prediction = model.predict(test_sample, verbose=0) # divide the predicted vector into two halves - one for published and # another for normal workflows nw_dimension = prediction.shape[1] half_len = int(nw_dimension / 2) # predict tools prediction = np.reshape(prediction, (nw_dimension,)) # get predictions of tools from published workflows standard_pred = prediction[:half_len] # get predictions of tools from normal workflows normal_pred = prediction[half_len:] standard_prediction_pos = np.argsort(standard_pred, axis=-1) standard_topk_prediction_pos = standard_prediction_pos[-topk] normal_prediction_pos = np.argsort(normal_pred, axis=-1) normal_topk_prediction_pos = normal_prediction_pos[-topk] # get true tools names for a_t_pos in actual_classes_pos: if a_t_pos > half_len: t_name = reverse_data_dictionary[int(a_t_pos - half_len)] else: t_name = reverse_data_dictionary[int(a_t_pos)] actual_next_tool_names.append(t_name) last_tool_name = reverse_data_dictionary[x[-1]] # compute scores for published recommendations if standard_topk_prediction_pos in reverse_data_dictionary: pred_t_name = reverse_data_dictionary[int(standard_topk_prediction_pos)] if last_tool_name in standard_conn: pub_tools = standard_conn[last_tool_name] if pred_t_name in pub_tools: pub_precision = 1.0 if last_tool_id in lowest_tool_ids: lowest_pub_prec = 1.0 if standard_topk_prediction_pos in usage_scores: usage_wt_score.append(np.log(usage_scores[standard_topk_prediction_pos] + 1.0)) # compute scores for normal recommendations if normal_topk_prediction_pos in reverse_data_dictionary: pred_t_name = reverse_data_dictionary[int(normal_topk_prediction_pos)] if pred_t_name in actual_next_tool_names: if normal_topk_prediction_pos in usage_scores: usage_wt_score.append(np.log(usage_scores[normal_topk_prediction_pos] + 1.0)) top_precision = 1.0 if last_tool_id in lowest_tool_ids: lowest_norm_prec = 1.0 if len(usage_wt_score) > 0: mean_usage = np.mean(usage_wt_score) return mean_usage, top_precision, pub_precision, lowest_pub_prec, lowest_norm_prec def get_lowest_tools(l_tool_freq, fraction=0.25): l_tool_freq = dict(sorted(l_tool_freq.items(), key=lambda kv: kv[1], reverse=True)) tool_ids = list(l_tool_freq.keys()) lowest_ids = tool_ids[-int(len(tool_ids) * fraction):] return lowest_ids def verify_model(model, x, y, reverse_data_dictionary, usage_scores, standard_conn, lowest_tool_ids, topk_list=[1, 2, 3]): """ Verify the model on test data """ print("Evaluating performance on test data...") print("Test data size: %d" % len(y)) size = y.shape[0] precision = np.zeros([len(y), len(topk_list)]) usage_weights = np.zeros([len(y), len(topk_list)]) epo_pub_prec = np.zeros([len(y), len(topk_list)]) epo_lowest_tools_pub_prec = list() epo_lowest_tools_norm_prec = list() # loop over all the test samples and find prediction precision for i in range(size): lowest_pub_topk = list() lowest_norm_topk = list() actual_classes_pos = np.where(y[i] > 0)[0] test_sample = x[i, :] last_tool_id = str(int(test_sample[-1])) for index, abs_topk in enumerate(topk_list): usg_wt_score, absolute_precision, pub_prec, lowest_p_prec, lowest_n_prec = compute_precision(model, test_sample, y, reverse_data_dictionary, usage_scores, actual_classes_pos, abs_topk, standard_conn, last_tool_id, lowest_tool_ids) precision[i][index] = absolute_precision usage_weights[i][index] = usg_wt_score epo_pub_prec[i][index] = pub_prec if last_tool_id in lowest_tool_ids: lowest_pub_topk.append(lowest_p_prec) lowest_norm_topk.append(lowest_n_prec) if last_tool_id in lowest_tool_ids: epo_lowest_tools_pub_prec.append(lowest_pub_topk) epo_lowest_tools_norm_prec.append(lowest_norm_topk) mean_precision = np.mean(precision, axis=0) mean_usage = np.mean(usage_weights, axis=0) mean_pub_prec = np.mean(epo_pub_prec, axis=0) mean_lowest_pub_prec = np.mean(epo_lowest_tools_pub_prec, axis=0) mean_lowest_norm_prec = np.mean(epo_lowest_tools_norm_prec, axis=0) return mean_usage, mean_precision, mean_pub_prec, mean_lowest_pub_prec, mean_lowest_norm_prec, len(epo_lowest_tools_pub_prec) def save_model(results, data_dictionary, compatible_next_tools, trained_model_path, class_weights, standard_connections): # save files trained_model = results["model"] best_model_parameters = results["best_parameters"] model_config = trained_model.to_json() model_weights = trained_model.get_weights() model_values = { 'data_dictionary': data_dictionary, 'model_config': model_config, 'best_parameters': best_model_parameters, 'model_weights': model_weights, "compatible_tools": compatible_next_tools, "class_weights": class_weights, "standard_connections": standard_connections } set_trained_model(trained_model_path, model_values)