Mercurial > repos > bgruening > create_tool_recommendation_model
view utils.py @ 0:9bf25dbe00ad draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/recommendation_training/tools/tool_recommendation_model commit 7fac577189d01cedd01118a77fc2baaefe7d5cad"
author | bgruening |
---|---|
date | Wed, 28 Aug 2019 07:19:38 -0400 |
parents | |
children | 76251d1ccdcc |
line wrap: on
line source
import os import numpy as np import json import h5py from keras.models import model_from_json, Sequential from keras.layers import Dense, GRU, Dropout from keras.layers.embeddings import Embedding from keras.layers.core import SpatialDropout1D from keras.optimizers import RMSprop from keras import backend as K def read_file(file_path): """ Read a file """ with open(file_path, "r") as json_file: file_content = json.loads(json_file.read()) return file_content def write_file(file_path, content): """ Write a file """ remove_file(file_path) with open(file_path, "w") as json_file: json_file.write(json.dumps(content)) def save_processed_workflows(file_path, unique_paths): workflow_paths_unique = "" for path in unique_paths: workflow_paths_unique += path + "\n" with open(file_path, "w") as workflows_file: workflows_file.write(workflow_paths_unique) def load_saved_model(model_config, model_weights): """ Load the saved trained model using the saved network and its weights """ # load the network loaded_model = model_from_json(model_config) # load the saved weights into the model loaded_model.set_weights(model_weights) return loaded_model def format_tool_id(tool_link): """ Extract tool id from tool link """ tool_id_split = tool_link.split("/") tool_id = tool_id_split[-2] if len(tool_id_split) > 1 else tool_link return tool_id def get_HDF5(hf, d_key): """ Read h5 file to get train and test data """ return hf.get(d_key).value def save_HDF5(hf_file, d_key, data, d_type=""): """ Save datasets as h5 file """ if (d_type == 'json'): data = json.dumps(data) hf_file.create_dataset(d_key, data=data) def set_trained_model(dump_file, model_values): """ Create an h5 file with the trained weights and associated dicts """ hf_file = h5py.File(dump_file, 'w') for key in model_values: value = model_values[key] if key == 'model_weights': for idx, item in enumerate(value): w_key = "weight_" + str(idx) if w_key in hf_file: hf_file.modify(w_key, item) else: hf_file.create_dataset(w_key, data=item) else: if key in hf_file: hf_file.modify(key, json.dumps(value)) else: hf_file.create_dataset(key, data=json.dumps(value)) hf_file.close() def remove_file(file_path): if os.path.exists(file_path): os.remove(file_path) def extract_configuration(config_object): config_loss = dict() for index, item in enumerate(config_object): config_loss[index] = list() d_config = dict() d_config['loss'] = item['result']['loss'] d_config['params_config'] = item['misc']['vals'] config_loss[index].append(d_config) return config_loss def get_best_parameters(mdl_dict): """ Get param values (defaults as well) """ lr = float(mdl_dict.get("learning_rate", "0.001")) embedding_size = int(mdl_dict.get("embedding_size", "512")) dropout = float(mdl_dict.get("dropout", "0.2")) recurrent_dropout = float(mdl_dict.get("recurrent_dropout", "0.2")) spatial_dropout = float(mdl_dict.get("spatial_dropout", "0.2")) units = int(mdl_dict.get("units", "512")) batch_size = int(mdl_dict.get("batch_size", "512")) activation_recurrent = mdl_dict.get("activation_recurrent", "elu") activation_output = mdl_dict.get("activation_output", "sigmoid") return { "lr": lr, "embedding_size": embedding_size, "dropout": dropout, "recurrent_dropout": recurrent_dropout, "spatial_dropout": spatial_dropout, "units": units, "batch_size": batch_size, "activation_recurrent": activation_recurrent, "activation_output": activation_output, } def weighted_loss(class_weights): """ Create a weighted loss function. Penalise the misclassification of classes more with the higher usage """ weight_values = list(class_weights.values()) def weighted_binary_crossentropy(y_true, y_pred): # add another dimension to compute dot product expanded_weights = K.expand_dims(weight_values, axis=-1) return K.dot(K.binary_crossentropy(y_true, y_pred), expanded_weights) return weighted_binary_crossentropy def set_recurrent_network(mdl_dict, reverse_dictionary, class_weights): """ Create a RNN network and set its parameters """ dimensions = len(reverse_dictionary) + 1 model_params = get_best_parameters(mdl_dict) # define the architecture of the neural network model = Sequential() model.add(Embedding(dimensions, model_params["embedding_size"], mask_zero=True)) model.add(SpatialDropout1D(model_params["spatial_dropout"])) model.add(GRU(model_params["units"], dropout=model_params["spatial_dropout"], recurrent_dropout=model_params["recurrent_dropout"], activation=model_params["activation_recurrent"], return_sequences=True)) model.add(Dropout(model_params["dropout"])) model.add(GRU(model_params["units"], dropout=model_params["spatial_dropout"], recurrent_dropout=model_params["recurrent_dropout"], activation=model_params["activation_recurrent"], return_sequences=False)) model.add(Dropout(model_params["dropout"])) model.add(Dense(dimensions, activation=model_params["activation_output"])) optimizer = RMSprop(lr=model_params["lr"]) model.compile(loss=weighted_loss(class_weights), optimizer=optimizer) return model, model_params def compute_precision(model, x, y, reverse_data_dictionary, next_compatible_tools, usage_scores, actual_classes_pos, topk): """ Compute absolute and compatible precision """ absolute_precision = 0.0 test_sample = np.reshape(x, (1, len(x))) # predict next tools for a test path prediction = model.predict(test_sample, verbose=0) nw_dimension = prediction.shape[1] # remove the 0th position as there is no tool at this index prediction = np.reshape(prediction, (nw_dimension,)) prediction_pos = np.argsort(prediction, axis=-1) topk_prediction_pos = prediction_pos[-topk:] # remove the wrong tool position from the predicted list of tool positions topk_prediction_pos = [x for x in topk_prediction_pos if x > 0] # read tool names using reverse dictionary actual_next_tool_names = [reverse_data_dictionary[int(tool_pos)] for tool_pos in actual_classes_pos] top_predicted_next_tool_names = [reverse_data_dictionary[int(tool_pos)] for tool_pos in topk_prediction_pos] # compute the class weights of predicted tools mean_usg_score = 0 usg_wt_scores = list() for t_id in topk_prediction_pos: t_name = reverse_data_dictionary[int(t_id)] if t_id in usage_scores and t_name in actual_next_tool_names: usg_wt_scores.append(np.log(usage_scores[t_id] + 1.0)) if len(usg_wt_scores) > 0: mean_usg_score = np.sum(usg_wt_scores) / float(topk) false_positives = [tool_name for tool_name in top_predicted_next_tool_names if tool_name not in actual_next_tool_names] absolute_precision = 1 - (len(false_positives) / float(topk)) return mean_usg_score, absolute_precision def verify_model(model, x, y, reverse_data_dictionary, next_compatible_tools, usage_scores, topk_list=[1, 2, 3]): """ Verify the model on test data """ print("Evaluating performance on test data...") print("Test data size: %d" % len(y)) size = y.shape[0] precision = np.zeros([len(y), len(topk_list)]) usage_weights = np.zeros([len(y), len(topk_list)]) # loop over all the test samples and find prediction precision for i in range(size): actual_classes_pos = np.where(y[i] > 0)[0] for index, abs_topk in enumerate(topk_list): abs_mean_usg_score, absolute_precision = compute_precision(model, x[i, :], y, reverse_data_dictionary, next_compatible_tools, usage_scores, actual_classes_pos, abs_topk) precision[i][index] = absolute_precision usage_weights[i][index] = abs_mean_usg_score mean_precision = np.mean(precision, axis=0) mean_usage = np.mean(usage_weights, axis=0) return mean_precision, mean_usage def save_model(results, data_dictionary, compatible_next_tools, trained_model_path, class_weights): # save files trained_model = results["model"] best_model_parameters = results["best_parameters"] model_config = trained_model.to_json() model_weights = trained_model.get_weights() model_values = { 'data_dictionary': data_dictionary, 'model_config': model_config, 'best_parameters': best_model_parameters, 'model_weights': model_weights, "compatible_tools": compatible_next_tools, "class_weights": class_weights } set_trained_model(trained_model_path, model_values)