Mercurial > repos > bgruening > ctb_machine_learning
diff mds_plot.xml @ 0:fe542273784f draft default tip
Uploaded
author | bgruening |
---|---|
date | Thu, 15 Aug 2013 03:39:14 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mds_plot.xml Thu Aug 15 03:39:14 2013 -0400 @@ -0,0 +1,52 @@ +<tool id="ctb_mds_plot" name="MDS Scatter Plot" version="0.1"> + <description>of molecule similarity</description> + <requirements> + <requirement type="package" version="0.13.1">scikit_learn</requirement> + <requirement type="package" version="1.2.1">matplotlib</requirement> + </requirements> + <command interpreter='python'> + mds_plot.py + -i $infile + --oformat $oformat + -o $outfile + </command> + <inputs> + <param name="infile" type="data" format="binary" label="Similarity Matrix"/> + <param name='oformat' type='select' format='text' label="Format of the resulting picture"> + <option value='png'>PNG</option> + <option value='svg'>SVG</option> + </param> + </inputs> + <outputs> + <data type="data" format="png" name="outfile" label="${tool.name} on ${on_string}"></data> + </outputs> + <tests> + <test> + <param name="infile" ftype="tabular" value="sm.dat" /> + <output ftype="png" name="outfile" file='mds_plot_on_sm_dat.png' /> + </test> + </tests> + <help> + +**Note**. You need an NxN similarity matrix as input. Use the NxN Clustering tool to generate one. + +**What it does** + +Scatter plot of similarity matrix after embeding in 2D coordinates using Multidimensional Scaling (MDS). + +----- + +**Example** + +* input:: + Similarity Matrix + +* output:: + + Scatter plot + +.. image:: $PATH_TO_IMAGES/mds_plot.png + + </help> + +</tool>