Mercurial > repos > bgruening > ctb_rdkit_descriptors
comparison dimorphite_dl.py @ 4:414edd9ea77d draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/chemicaltoolbox/rdkit commit 20df7e562341cd30e89a14d6bde9054956fadc06"
author | bgruening |
---|---|
date | Tue, 10 Mar 2020 12:58:24 -0400 |
parents | |
children | a1c53f0533b0 |
comparison
equal
deleted
inserted
replaced
3:617d4555d8d3 | 4:414edd9ea77d |
---|---|
1 # Copyright 2018 Jacob D. Durrant | |
2 # | |
3 # Licensed under the Apache License, Version 2.0 (the "License"); | |
4 # you may not use this file except in compliance with the License. | |
5 # You may obtain a copy of the License at | |
6 # | |
7 # http://www.apache.org/licenses/LICENSE-2.0 | |
8 # | |
9 # Unless required by applicable law or agreed to in writing, software | |
10 # distributed under the License is distributed on an "AS IS" BASIS, | |
11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
12 # See the License for the specific language governing permissions and | |
13 # limitations under the License. | |
14 | |
15 """ | |
16 This script identifies and enumerates the possible protonation sites of SMILES | |
17 strings. | |
18 """ | |
19 | |
20 from __future__ import print_function | |
21 import copy | |
22 import os | |
23 import argparse | |
24 import sys | |
25 | |
26 try: | |
27 # Python2 | |
28 from StringIO import StringIO | |
29 except ImportError: | |
30 # Python3 | |
31 from io import StringIO | |
32 | |
33 # Always let the user know a help file is available. | |
34 print("\nFor help, use: python dimorphite_dl.py --help") | |
35 | |
36 # And always report citation information. | |
37 print("\nIf you use Dimorphite-DL in your research, please cite:") | |
38 print("Ropp PJ, Kaminsky JC, Yablonski S, Durrant JD (2019) Dimorphite-DL: An") | |
39 print("open-source program for enumerating the ionization states of drug-like small") | |
40 print("molecules. J Cheminform 11:14. doi:10.1186/s13321-019-0336-9.\n") | |
41 | |
42 try: | |
43 import rdkit | |
44 from rdkit import Chem | |
45 from rdkit.Chem import AllChem | |
46 except: | |
47 msg = "Dimorphite-DL requires RDKit. See https://www.rdkit.org/" | |
48 print(msg) | |
49 raise Exception(msg) | |
50 | |
51 def main(params=None): | |
52 """The main definition run when you call the script from the commandline. | |
53 | |
54 :param params: The parameters to use. Entirely optional. If absent, | |
55 defaults to None, in which case argments will be taken from | |
56 those given at the command line. | |
57 :param params: dict, optional | |
58 :return: Returns a list of the SMILES strings return_as_list parameter is | |
59 True. Otherwise, returns None. | |
60 """ | |
61 | |
62 parser = ArgParseFuncs.get_args() | |
63 args = vars(parser.parse_args()) | |
64 | |
65 # Add in any parameters in params. | |
66 if params is not None: | |
67 for k, v in params.items(): | |
68 args[k] = v | |
69 | |
70 # If being run from the command line, print out all parameters. | |
71 if __name__ == "__main__": | |
72 print("\nPARAMETERS:\n") | |
73 for k in sorted(args.keys()): | |
74 print(k.rjust(13) + ": " + str(args[k])) | |
75 print("") | |
76 | |
77 if args["test"]: | |
78 # Run tests. | |
79 TestFuncs.test() | |
80 else: | |
81 # Run protonation | |
82 if "output_file" in args and args["output_file"] is not None: | |
83 # An output file was specified, so write to that. | |
84 with open(args["output_file"], "w") as file: | |
85 for protonated_smi in Protonate(args): | |
86 file.write(protonated_smi + "\n") | |
87 elif "return_as_list" in args and args["return_as_list"] == True: | |
88 return list(Protonate(args)) | |
89 else: | |
90 # No output file specified. Just print it to the screen. | |
91 for protonated_smi in Protonate(args): | |
92 print(protonated_smi) | |
93 | |
94 class MyParser(argparse.ArgumentParser): | |
95 """Overwrite default parse so it displays help file on error. See | |
96 https://stackoverflow.com/questions/4042452/display-help-message-with-python-argparse-when-script-is-called-without-any-argu""" | |
97 | |
98 def error(self, message): | |
99 """Overwrites the default error message. | |
100 | |
101 :param message: The default error message. | |
102 """ | |
103 | |
104 self.print_help() | |
105 msg = "ERROR: %s\n\n" % message | |
106 print(msg) | |
107 raise Exception(msg) | |
108 | |
109 def print_help(self, file=None): | |
110 """Overwrite the default print_help function | |
111 | |
112 :param file: Output file, defaults to None | |
113 """ | |
114 | |
115 print("") | |
116 | |
117 if file is None: | |
118 file = sys.stdout | |
119 self._print_message(self.format_help(), file) | |
120 print(""" | |
121 examples: | |
122 python dimorphite_dl.py --smiles_file sample_molecules.smi | |
123 python dimorphite_dl.py --smiles "CCC(=O)O" --min_ph -3.0 --max_ph -2.0 | |
124 python dimorphite_dl.py --smiles "CCCN" --min_ph -3.0 --max_ph -2.0 --output_file output.smi | |
125 python dimorphite_dl.py --smiles_file sample_molecules.smi --pka_precision 2.0 --label_states | |
126 python dimorphite_dl.py --test""") | |
127 print("") | |
128 | |
129 class ArgParseFuncs: | |
130 """A namespace for storing functions that are useful for processing | |
131 command-line arguments. To keep things organized.""" | |
132 | |
133 @staticmethod | |
134 def get_args(): | |
135 """Gets the arguments from the command line. | |
136 | |
137 :return: A parser object. | |
138 """ | |
139 | |
140 parser = MyParser(description="Dimorphite 1.2: Creates models of " + | |
141 "appropriately protonated small moleucles. " + | |
142 "Apache 2.0 License. Copyright 2018 Jacob D. " + | |
143 "Durrant.") | |
144 parser.add_argument('--min_ph', metavar='MIN', type=float, default=6.4, | |
145 help='minimum pH to consider (default: 6.4)') | |
146 parser.add_argument('--max_ph', metavar='MAX', type=float, default=8.4, | |
147 help='maximum pH to consider (default: 8.4)') | |
148 parser.add_argument('--pka_precision', metavar='PRE', type=float, default=1.0, | |
149 help='pKa precision factor (number of standard devations, default: 1.0)') | |
150 parser.add_argument('--smiles', metavar='SMI', type=str, | |
151 help='SMILES string to protonate') | |
152 parser.add_argument('--smiles_file', metavar="FILE", type=str, | |
153 help='file that contains SMILES strings to protonate') | |
154 parser.add_argument('--output_file', metavar="FILE", type=str, | |
155 help='output file to write protonated SMILES (optional)') | |
156 parser.add_argument('--label_states', action="store_true", | |
157 help='label protonated SMILES with target state ' + \ | |
158 '(i.e., "DEPROTONATED", "PROTONATED", or "BOTH").') | |
159 parser.add_argument('--test', action="store_true", | |
160 help='run unit tests (for debugging)') | |
161 | |
162 return parser | |
163 | |
164 @staticmethod | |
165 def clean_args(args): | |
166 """Cleans and normalizes input parameters | |
167 | |
168 :param args: A dictionary containing the arguments. | |
169 :type args: dict | |
170 :raises Exception: No SMILES in params. | |
171 """ | |
172 | |
173 defaults = {'min_ph' : 6.4, | |
174 'max_ph' : 8.4, | |
175 'pka_precision' : 1.0, | |
176 'label_states' : False, | |
177 'test' : False} | |
178 | |
179 for key in defaults: | |
180 if key not in args: | |
181 args[key] = defaults[key] | |
182 | |
183 keys = list(args.keys()) | |
184 for key in keys: | |
185 if args[key] is None: | |
186 del args[key] | |
187 | |
188 if not "smiles" in args and not "smiles_file" in args: | |
189 msg = "Error: No SMILES in params. Use the -h parameter for help." | |
190 print(msg) | |
191 raise Exception(msg) | |
192 | |
193 # If the user provides a smiles string, turn it into a file-like StringIO | |
194 # object. | |
195 if "smiles" in args: | |
196 if isinstance(args["smiles"], str): | |
197 args["smiles_file"] = StringIO(args["smiles"]) | |
198 | |
199 args["smiles_and_data"] = LoadSMIFile(args["smiles_file"]) | |
200 | |
201 return args | |
202 | |
203 class UtilFuncs: | |
204 """A namespace to store functions for manipulating mol objects. To keep | |
205 things organized.""" | |
206 | |
207 @staticmethod | |
208 def neutralize_mol(mol): | |
209 """All molecules should be neuralized to the extent possible. The user | |
210 should not be allowed to specify the valence of the atoms in most cases. | |
211 | |
212 :param rdkit.Chem.rdchem.Mol mol: The rdkit Mol objet to be neutralized. | |
213 :return: The neutralized Mol object. | |
214 """ | |
215 | |
216 # Get the reaction data | |
217 rxn_data = [ | |
218 ['[Ov1-1:1]', '[Ov2+0:1]-[H]'], # To handle O- bonded to only one atom (add hydrogen). | |
219 ['[#7v4+1:1]-[H]', '[#7v3+0:1]'], # To handle N+ bonded to a hydrogen (remove hydrogen). | |
220 ['[Ov2-:1]', '[Ov2+0:1]'], # To handle O- bonded to two atoms. Should not be Negative. | |
221 ['[#7v3+1:1]', '[#7v3+0:1]'], # To handle N+ bonded to three atoms. Should not be positive. | |
222 ['[#7v2-1:1]', '[#7+0:1]-[H]'], # To handle N- Bonded to two atoms. Add hydrogen. | |
223 # ['[N:1]=[N+0:2]=[N:3]-[H]', '[N:1]=[N+1:2]=[N+0:3]-[H]'], # To | |
224 # handle bad azide. Must be protonated. (Now handled elsewhere, before | |
225 # SMILES converted to Mol object.) | |
226 ['[H]-[N:1]-[N:2]#[N:3]', '[N:1]=[N+1:2]=[N:3]-[H]'] # To handle bad azide. R-N-N#N should be R-N=[N+]=N | |
227 ] | |
228 | |
229 # Add substructures and reactions (initially none) | |
230 for i, rxn_datum in enumerate(rxn_data): | |
231 rxn_data[i].append(Chem.MolFromSmarts(rxn_datum[0])) | |
232 rxn_data[i].append(None) | |
233 | |
234 # Add hydrogens (respects valence, so incomplete). | |
235 # Chem.calcImplicitValence(mol) | |
236 mol.UpdatePropertyCache(strict=False) | |
237 mol = Chem.AddHs(mol) | |
238 | |
239 while True: # Keep going until all these issues have been resolved. | |
240 current_rxn = None # The reaction to perform. | |
241 current_rxn_str = None | |
242 | |
243 for i, rxn_datum in enumerate(rxn_data): | |
244 reactant_smarts, product_smarts, substruct_match_mol, rxn_placeholder = rxn_datum | |
245 if mol.HasSubstructMatch(substruct_match_mol): | |
246 if rxn_placeholder is None: | |
247 current_rxn_str = reactant_smarts + '>>' + product_smarts | |
248 current_rxn = AllChem.ReactionFromSmarts(current_rxn_str) | |
249 rxn_data[i][3] = current_rxn # Update the placeholder. | |
250 else: | |
251 current_rxn = rxn_data[i][3] | |
252 break | |
253 | |
254 # Perform the reaction if necessary | |
255 if current_rxn is None: # No reaction left, so break out of while loop. | |
256 break | |
257 else: | |
258 mol = current_rxn.RunReactants((mol,))[0][0] | |
259 mol.UpdatePropertyCache(strict=False) # Update valences | |
260 | |
261 # The mols have been altered from the reactions described above, we need | |
262 # to resanitize them. Make sure aromatic rings are shown as such This | |
263 # catches all RDKit Errors. without the catchError and sanitizeOps the | |
264 # Chem.SanitizeMol can crash the program. | |
265 sanitize_string = Chem.SanitizeMol( | |
266 mol, | |
267 sanitizeOps=rdkit.Chem.rdmolops.SanitizeFlags.SANITIZE_ALL, | |
268 catchErrors = True | |
269 ) | |
270 | |
271 return mol if sanitize_string.name == "SANITIZE_NONE" else None | |
272 | |
273 @staticmethod | |
274 def convert_smiles_str_to_mol(smiles_str): | |
275 """Given a SMILES string, check that it is actually a string and not a | |
276 None. Then try to convert it to an RDKit Mol Object. | |
277 | |
278 :param string smiles_str: The SMILES string. | |
279 :return: A rdkit.Chem.rdchem.Mol object, or None if it is the wrong type or | |
280 if it fails to convert to a Mol Obj | |
281 """ | |
282 | |
283 # Check that there are no type errors, ie Nones or non-string | |
284 # A non-string type will cause RDKit to hard crash | |
285 if smiles_str is None or type(smiles_str) is not str: | |
286 return None | |
287 | |
288 # Try to fix azides here. They are just tricky to deal with. | |
289 smiles_str = smiles_str.replace("N=N=N", "N=[N+]=N") | |
290 smiles_str = smiles_str.replace("NN#N", "N=[N+]=N") | |
291 | |
292 # Now convert to a mol object. Note the trick that is necessary to | |
293 # capture RDKit error/warning messages. See | |
294 # https://stackoverflow.com/questions/24277488/in-python-how-to-capture-the-stdout-from-a-c-shared-library-to-a-variable | |
295 stderr_fileno = sys.stderr.fileno() | |
296 stderr_save = os.dup(stderr_fileno) | |
297 stderr_pipe = os.pipe() | |
298 os.dup2(stderr_pipe[1], stderr_fileno) | |
299 os.close(stderr_pipe[1]) | |
300 | |
301 mol = Chem.MolFromSmiles(smiles_str) | |
302 | |
303 os.close(stderr_fileno) | |
304 os.close(stderr_pipe[0]) | |
305 os.dup2(stderr_save, stderr_fileno) | |
306 os.close(stderr_save) | |
307 | |
308 # Check that there are None type errors Chem.MolFromSmiles has sanitize on | |
309 # which means if there is even a small error in the SMILES (kekulize, | |
310 # nitrogen charge...) then mol=None. ie. | |
311 # Chem.MolFromSmiles("C[N]=[N]=[N]") = None this is an example of an | |
312 # nitrogen charge error. It is cased in a try statement to be overly | |
313 # cautious. | |
314 | |
315 return None if mol is None else mol | |
316 | |
317 @staticmethod | |
318 def eprint(*args, **kwargs): | |
319 """Error messages should be printed to STDERR. See | |
320 https://stackoverflow.com/questions/5574702/how-to-print-to-stderr-in-python""" | |
321 | |
322 print(*args, file=sys.stderr, **kwargs) | |
323 | |
324 class LoadSMIFile(object): | |
325 """A generator class for loading in the SMILES strings from a file, one at | |
326 a time.""" | |
327 | |
328 def __init__(self, filename): | |
329 """Initializes this class. | |
330 | |
331 :param filename: The filename or file object (i.e., StringIO). | |
332 :type filename: str or StringIO | |
333 """ | |
334 | |
335 if type(filename) is str: | |
336 # It's a filename | |
337 self.f = open(filename, "r") | |
338 else: | |
339 # It's a file object (i.e., StringIO) | |
340 self.f = filename | |
341 | |
342 def __iter__(self): | |
343 """Returns this generator object. | |
344 | |
345 :return: This generator object. | |
346 :rtype: LoadSMIFile | |
347 """ | |
348 | |
349 return self | |
350 | |
351 def __next__(self): | |
352 """Ensure Python3 compatibility. | |
353 | |
354 :return: A dict, where the "smiles" key contains the canonical SMILES | |
355 string and the "data" key contains the remaining information | |
356 (e.g., the molecule name). | |
357 :rtype: dict | |
358 """ | |
359 | |
360 return self.next() | |
361 | |
362 def next(self): | |
363 """Get the data associated with the next line. | |
364 | |
365 :raises StopIteration: If there are no more lines left iin the file. | |
366 :return: A dict, where the "smiles" key contains the canonical SMILES | |
367 string and the "data" key contains the remaining information | |
368 (e.g., the molecule name). | |
369 :rtype: dict | |
370 """ | |
371 | |
372 line = self.f.readline() | |
373 | |
374 if line == "": | |
375 # EOF | |
376 self.f.close() | |
377 raise StopIteration() | |
378 return | |
379 | |
380 # Divide line into smi and data | |
381 splits = line.split() | |
382 if len(splits) != 0: | |
383 # Generate mol object | |
384 smiles_str = splits[0] | |
385 | |
386 # Convert from SMILES string to RDKIT Mol. This series of tests is | |
387 # to make sure the SMILES string is properly formed and to get it | |
388 # into a canonical form. Filter if failed. | |
389 mol = UtilFuncs.convert_smiles_str_to_mol(smiles_str) | |
390 if mol is None: | |
391 UtilFuncs.eprint("WARNING: Skipping poorly formed SMILES string: " + line) | |
392 return self.next() | |
393 | |
394 # Handle nuetralizing the molecules. Filter if failed. | |
395 mol = UtilFuncs.neutralize_mol(mol) | |
396 if mol is None: | |
397 UtilFuncs.eprint("WARNING: Skipping poorly formed SMILES string: " + line) | |
398 return self.next() | |
399 | |
400 # Remove the hydrogens. | |
401 try: | |
402 mol = Chem.RemoveHs(mol) | |
403 except: | |
404 UtilFuncs.eprint("WARNING: Skipping poorly formed SMILES string: " + line) | |
405 return self.next() | |
406 | |
407 if mol is None: | |
408 UtilFuncs.eprint("WARNING: Skipping poorly formed SMILES string: " + line) | |
409 return self.next() | |
410 | |
411 # Regenerate the smiles string (to standardize). | |
412 new_mol_string = Chem.MolToSmiles(mol, isomericSmiles=True) | |
413 | |
414 return { | |
415 "smiles": new_mol_string, | |
416 "data": splits[1:] | |
417 } | |
418 else: | |
419 # Blank line? Go to next one. | |
420 return self.next() | |
421 | |
422 class Protonate(object): | |
423 """A generator class for protonating SMILES strings, one at a time.""" | |
424 | |
425 def __init__(self, args): | |
426 """Initialize the generator. | |
427 | |
428 :param args: A dictionary containing the arguments. | |
429 :type args: dict | |
430 """ | |
431 | |
432 # Make the args an object variable variable. | |
433 self.args = args | |
434 | |
435 # A list to store the protonated SMILES strings associated with a | |
436 # single input model. | |
437 self.cur_prot_SMI = [] | |
438 | |
439 # Clean and normalize the args | |
440 self.args = ArgParseFuncs.clean_args(args) | |
441 | |
442 # Load the substructures that can be protonated. | |
443 self.subs = ProtSubstructFuncs.load_protonation_substructs_calc_state_for_ph( | |
444 self.args["min_ph"], self.args["max_ph"], self.args["pka_precision"] | |
445 ) | |
446 | |
447 def __iter__(self): | |
448 """Returns this generator object. | |
449 | |
450 :return: This generator object. | |
451 :rtype: Protonate | |
452 """ | |
453 | |
454 return self | |
455 | |
456 def __next__(self): | |
457 """Ensure Python3 compatibility. | |
458 | |
459 :return: A dict, where the "smiles" key contains the canonical SMILES | |
460 string and the "data" key contains the remaining information | |
461 (e.g., the molecule name). | |
462 :rtype: dict | |
463 """ | |
464 | |
465 return self.next() | |
466 | |
467 def next(self): | |
468 """Get the next protonated SMILES string. | |
469 | |
470 :raises StopIteration: If there are no more lines left iin the file. | |
471 :return: TODO A dict, where the "smiles" key contains the canonical SMILES | |
472 string and the "data" key contains the remaining information | |
473 (e.g., the molecule name). | |
474 :rtype: dict | |
475 """ | |
476 | |
477 # If there are any SMILES strings in self.cur_prot_SMI, just return | |
478 # the first one and update the list to include only the remaining. | |
479 if len(self.cur_prot_SMI) > 0: | |
480 first, self.cur_prot_SMI = self.cur_prot_SMI[0], self.cur_prot_SMI[1:] | |
481 return first | |
482 | |
483 # self.cur_prot_SMI is empty, so try to add more to it. | |
484 | |
485 # Get the next SMILES string from the input file. | |
486 try: | |
487 smile_and_datum = self.args["smiles_and_data"].next() | |
488 except StopIteration: | |
489 # There are no more input smiles strings... | |
490 raise StopIteration() | |
491 | |
492 smi = smile_and_datum["smiles"] | |
493 data = smile_and_datum["data"] # Everything on SMILES line but the | |
494 # SMILES string itself (e.g., the | |
495 # molecule name). | |
496 | |
497 # Collect the data associated with this smiles (e.g., the molecule | |
498 # name). | |
499 tag = " ".join(data) | |
500 | |
501 # sites is a list of (atom index, "PROTONATED|DEPROTONATED|BOTH"). | |
502 # Note that the second entry indicates what state the site SHOULD be | |
503 # in (not the one it IS in per the SMILES string). It's calculated | |
504 # based on the probablistic distributions obtained during training. | |
505 sites = ProtSubstructFuncs.get_prot_sites_and_target_states(smi, self.subs) | |
506 | |
507 new_smis = [smi] | |
508 for site in sites: | |
509 # Make a new smiles with the correct protonation state. Note that | |
510 # new_smis is a growing list. This is how multiple protonation | |
511 # sites are handled. | |
512 | |
513 # new_smis_to_perhaps_add = ProtSubstructFuncs.protonate_site(new_smis, site) | |
514 new_smis = ProtSubstructFuncs.protonate_site(new_smis, site) | |
515 # print(site, new_smis) # Good for debugging. | |
516 | |
517 # Only add new smiles if not already in the list. | |
518 # for s in new_smis_to_perhaps_add: | |
519 # if not s in new_smis: | |
520 # new_smis.append(s) | |
521 | |
522 # In some cases, the script might generate redundant molecules. | |
523 # Phosphonates, when the pH is between the two pKa values and the | |
524 # stdev value is big enough, for example, will generate two identical | |
525 # BOTH states. Let's remove this redundancy. | |
526 new_smis = list(set(new_smis)) | |
527 | |
528 # Deprotonating protonated aromatic nitrogen gives [nH-]. Change this | |
529 # to [n-]. This is a hack. | |
530 new_smis = [s.replace("[nH-]", "[n-]") for s in new_smis] | |
531 | |
532 # Sometimes Dimorphite-DL generates molecules that aren't actually | |
533 # possible. Simply convert these to mol objects to eliminate the bad | |
534 # ones (that are None). | |
535 new_smis = [s for s in new_smis if UtilFuncs.convert_smiles_str_to_mol(s) is not None] | |
536 | |
537 # If there are no smi left, return the input one at the very least. | |
538 # All generated forms have apparently been judged | |
539 # inappropriate/mal-formed. | |
540 if len(new_smis) == 0: | |
541 new_smis = [smi] | |
542 | |
543 # If the user wants to see the target states, add those | |
544 # to the ends of each line. | |
545 if self.args["label_states"]: | |
546 states = '\t'.join([x[1] for x in sites]) | |
547 new_lines = [x + "\t" + tag + "\t" + states for x in new_smis] | |
548 else: | |
549 new_lines = [x + "\t" + tag for x in new_smis] | |
550 | |
551 self.cur_prot_SMI = new_lines | |
552 | |
553 return self.next() | |
554 | |
555 class ProtSubstructFuncs: | |
556 """A namespace to store functions for loading the substructures that can | |
557 be protonated. To keep things organized.""" | |
558 | |
559 @staticmethod | |
560 def load_protonation_substructs_calc_state_for_ph(min_ph=6.4, max_ph=8.4, pka_std_range=1): | |
561 """A pre-calculated list of R-groups with protonation sites, with their | |
562 likely pKa bins. | |
563 | |
564 :param float min_ph: The lower bound on the pH range, defaults to 6.4. | |
565 :param float max_ph: The upper bound on the pH range, defaults to 8.4. | |
566 :param pka_std_range: Basically the precision (stdev from predicted pKa to | |
567 consider), defaults to 1. | |
568 :return: A dict of the protonation substructions for the specified pH | |
569 range. | |
570 """ | |
571 | |
572 subs = [] | |
573 pwd = os.path.dirname(os.path.realpath(__file__)) | |
574 | |
575 site_structures_file = "{}/{}".format(pwd, "site_substructures.smarts") | |
576 with open(site_structures_file, 'r') as substruct: | |
577 for line in substruct: | |
578 line = line.strip() | |
579 sub = {} | |
580 if line is not "": | |
581 splits = line.split() | |
582 sub["name"] = splits[0] | |
583 sub["smart"] = splits[1] | |
584 sub["mol"] = Chem.MolFromSmarts(sub["smart"]) | |
585 | |
586 # NEED TO DIVIDE THIS BY 3s | |
587 pka_ranges = [splits[i:i+3] for i in range(2, len(splits)-1, 3)] | |
588 | |
589 prot = [] | |
590 for pka_range in pka_ranges: | |
591 site = pka_range[0] | |
592 std = float(pka_range[2]) * pka_std_range | |
593 mean = float(pka_range[1]) | |
594 protonation_state = ProtSubstructFuncs.define_protonation_state( | |
595 mean, std, min_ph, max_ph | |
596 ) | |
597 | |
598 prot.append([site, protonation_state]) | |
599 | |
600 sub["prot_states_for_pH"] = prot | |
601 subs.append(sub) | |
602 return subs | |
603 | |
604 @staticmethod | |
605 def define_protonation_state(mean, std, min_ph, max_ph): | |
606 """Updates the substructure definitions to include the protonation state | |
607 based on the user-given pH range. The size of the pKa range is also based | |
608 on the number of standard deviations to be considered by the user param. | |
609 | |
610 :param float mean: The mean pKa. | |
611 :param float std: The precision (stdev). | |
612 :param float min_ph: The min pH of the range. | |
613 :param float max_ph: The max pH of the range. | |
614 :return: A string describing the protonation state. | |
615 """ | |
616 | |
617 min_pka = mean - std | |
618 max_pka = mean + std | |
619 | |
620 # This needs to be reassigned, and 'ERROR' should never make it past the | |
621 # next set of checks. | |
622 if min_pka <= max_ph and min_ph <= max_pka: | |
623 protonation_state = 'BOTH' | |
624 elif mean > max_ph: | |
625 protonation_state = 'PROTONATED' | |
626 else: | |
627 protonation_state = 'DEPROTONATED' | |
628 | |
629 return protonation_state | |
630 | |
631 @staticmethod | |
632 def get_prot_sites_and_target_states(smi, subs): | |
633 """For a single molecule, find all possible matches in the protonation | |
634 R-group list, subs. Items that are higher on the list will be matched | |
635 first, to the exclusion of later items. | |
636 | |
637 :param string smi: A SMILES string. | |
638 :param list subs: Substructure information. | |
639 :return: A list of protonation sites and their pKa bin. ('PROTONATED', | |
640 'BOTH', or 'DEPROTONATED') | |
641 """ | |
642 | |
643 # Convert the Smiles string (smi) to an RDKit Mol Obj | |
644 mol = UtilFuncs.convert_smiles_str_to_mol(smi) | |
645 | |
646 # Check Conversion worked | |
647 if mol is None: | |
648 UtilFuncs.eprint("ERROR: ", smi) | |
649 return [] | |
650 | |
651 # Try to Add hydrogens. if failed return [] | |
652 try: | |
653 mol = Chem.AddHs(mol) | |
654 except: | |
655 UtilFuncs.eprint("ERROR: ", smi) | |
656 return [] | |
657 | |
658 # Check adding Hs worked | |
659 if mol is None: | |
660 UtilFuncs.eprint("ERROR: ", smi) | |
661 return [] | |
662 | |
663 ProtectUnprotectFuncs.unprotect_molecule(mol) | |
664 protonation_sites = [] | |
665 | |
666 for item in subs: | |
667 smart = item["mol"] | |
668 if mol.HasSubstructMatch(smart): | |
669 matches = ProtectUnprotectFuncs.get_unprotected_matches(mol, smart) | |
670 prot = item["prot_states_for_pH"] | |
671 for match in matches: | |
672 # We want to move the site from being relative to the | |
673 # substructure, to the index on the main molecule. | |
674 for site in prot: | |
675 proton = int(site[0]) | |
676 category = site[1] | |
677 new_site = (match[proton], category, item["name"]) | |
678 | |
679 if not new_site in protonation_sites: | |
680 # Because sites must be unique. | |
681 protonation_sites.append(new_site) | |
682 | |
683 ProtectUnprotectFuncs.protect_molecule(mol, match) | |
684 | |
685 return protonation_sites | |
686 | |
687 @staticmethod | |
688 def protonate_site(smis, site): | |
689 """Given a list of SMILES strings, we protonate the site. | |
690 | |
691 :param list smis: The list of SMILES strings. | |
692 :param tuple site: Information about the protonation site. | |
693 (idx, target_prot_state, prot_site_name) | |
694 :return: A list of the appropriately protonated SMILES. | |
695 """ | |
696 | |
697 # Decouple the atom index and its target protonation state from the site | |
698 # tuple | |
699 idx, target_prot_state, prot_site_name = site | |
700 | |
701 # Initialize the output list | |
702 output_smis = [] | |
703 | |
704 state_to_charge = {"DEPROTONATED": [-1], | |
705 "PROTONATED": [0], | |
706 "BOTH": [-1, 0]} | |
707 | |
708 charges = state_to_charge[target_prot_state] | |
709 | |
710 # Now make the actual smiles match the target protonation state. | |
711 output_smis = ProtSubstructFuncs.set_protonation_charge(smis, idx, charges, prot_site_name) | |
712 | |
713 return output_smis | |
714 | |
715 @staticmethod | |
716 def set_protonation_charge(smis, idx, charges, prot_site_name): | |
717 """Sets the atomic charge on a particular site for a set of SMILES. | |
718 | |
719 :param list smis: A list of the SMILES strings. | |
720 :param int idx: The index of the atom to consider. | |
721 :param list charges: A list of the charges (ints) to assign at | |
722 this site. | |
723 :param string prot_site_name: The name of the protonation site. | |
724 :return: A list of the processed SMILES strings. | |
725 """ | |
726 | |
727 # Sets up the output list and the Nitrogen charge | |
728 output = [] | |
729 | |
730 for charge in charges: | |
731 # The charge for Nitrogens is 1 higher than others (i.e., protonated | |
732 # state is positively charged). | |
733 nitro_charge = charge + 1 | |
734 | |
735 # But there are a few nitrogen moieties where the acidic group is the | |
736 # neutral one. Amides are a good example. I gave some thought re. how | |
737 # to best flag these. I decided that those nitrogen-containing | |
738 # moieties where the acidic group is neutral (rather than positively | |
739 # charged) will have "*" in the name. | |
740 if "*" in prot_site_name: | |
741 nitro_charge = nitro_charge - 1 # Undo what was done previously. | |
742 | |
743 for smi in smis: | |
744 | |
745 # Convert smilesstring (smi) into a RDKit Mol | |
746 mol = UtilFuncs.convert_smiles_str_to_mol(smi) | |
747 | |
748 # Check that the conversion worked, skip if it fails | |
749 if mol is None: | |
750 continue | |
751 | |
752 atom = mol.GetAtomWithIdx(idx) | |
753 | |
754 # Assign the protonation charge, with special care for Nitrogens | |
755 element = atom.GetAtomicNum() | |
756 if element == 7: | |
757 atom.SetFormalCharge(nitro_charge) | |
758 else: | |
759 atom.SetFormalCharge(charge) | |
760 | |
761 # Convert back to SMILE and add to output | |
762 out_smile = Chem.MolToSmiles(mol, isomericSmiles=True,canonical=True) | |
763 output.append(out_smile) | |
764 | |
765 return output | |
766 | |
767 class ProtectUnprotectFuncs: | |
768 """A namespace for storing functions that are useful for protecting and | |
769 unprotecting molecules. To keep things organized. We need to identify and | |
770 mark groups that have been matched with a substructure.""" | |
771 | |
772 @staticmethod | |
773 def unprotect_molecule(mol): | |
774 """Sets the protected property on all atoms to 0. This also creates the | |
775 property for new molecules. | |
776 | |
777 :param rdkit.Chem.rdchem.Mol mol: The rdkit Mol object. | |
778 :type mol: The rdkit Mol object with atoms unprotected. | |
779 """ | |
780 | |
781 for atom in mol.GetAtoms(): | |
782 atom.SetProp('_protected', '0') | |
783 | |
784 @staticmethod | |
785 def protect_molecule(mol, match): | |
786 """Given a 'match', a list of molecules idx's, we set the protected status | |
787 of each atom to 1. This will prevent any matches using that atom in the | |
788 future. | |
789 | |
790 :param rdkit.Chem.rdchem.Mol mol: The rdkit Mol object to protect. | |
791 :param list match: A list of molecule idx's. | |
792 """ | |
793 | |
794 for idx in match: | |
795 atom = mol.GetAtomWithIdx(idx) | |
796 atom.SetProp('_protected', '1') | |
797 | |
798 @staticmethod | |
799 def get_unprotected_matches(mol, substruct): | |
800 """Finds substructure matches with atoms that have not been protected. | |
801 Returns list of matches, each match a list of atom idxs. | |
802 | |
803 :param rdkit.Chem.rdchem.Mol mol: The Mol object to consider. | |
804 :param string substruct: The SMARTS string of the substructure ot match. | |
805 :return: A list of the matches. Each match is itself a list of atom idxs. | |
806 """ | |
807 | |
808 matches = mol.GetSubstructMatches(substruct) | |
809 unprotected_matches = [] | |
810 for match in matches: | |
811 if ProtectUnprotectFuncs.is_match_unprotected(mol, match): | |
812 unprotected_matches.append(match) | |
813 return unprotected_matches | |
814 | |
815 @staticmethod | |
816 def is_match_unprotected(mol, match): | |
817 """Checks a molecule to see if the substructure match contains any | |
818 protected atoms. | |
819 | |
820 :param rdkit.Chem.rdchem.Mol mol: The Mol object to check. | |
821 :param list match: The match to check. | |
822 :return: A boolean, whether the match is present or not. | |
823 """ | |
824 | |
825 for idx in match: | |
826 atom = mol.GetAtomWithIdx(idx) | |
827 protected = atom.GetProp("_protected") | |
828 if protected == "1": | |
829 return False | |
830 return True | |
831 | |
832 class TestFuncs: | |
833 """A namespace for storing functions that perform tests on the code. To | |
834 keep things organized.""" | |
835 | |
836 @staticmethod | |
837 def test(): | |
838 """Tests all the 38 groups.""" | |
839 | |
840 smis = [ | |
841 # [input smiles, pka, protonated, deprotonated, category] | |
842 ["C#CCO", "C#CCO", "C#CC[O-]", "Alcohol"], | |
843 ["C(=O)N", "NC=O", "[NH-]C=O", "Amide"], | |
844 ["CC(=O)NOC(C)=O", "CC(=O)NOC(C)=O", "CC(=O)[N-]OC(C)=O", "Amide_electronegative"], | |
845 ["COC(=N)N", "COC(N)=[NH2+]", "COC(=N)N", "AmidineGuanidine2"], | |
846 ["Brc1ccc(C2NCCS2)cc1", "Brc1ccc(C2[NH2+]CCS2)cc1", "Brc1ccc(C2NCCS2)cc1", "Amines_primary_secondary_tertiary"], | |
847 ["CC(=O)[n+]1ccc(N)cc1", "CC(=O)[n+]1ccc([NH3+])cc1", "CC(=O)[n+]1ccc(N)cc1", "Anilines_primary"], | |
848 ["CCNc1ccccc1", "CC[NH2+]c1ccccc1", "CCNc1ccccc1", "Anilines_secondary"], | |
849 ["Cc1ccccc1N(C)C", "Cc1ccccc1[NH+](C)C", "Cc1ccccc1N(C)C", "Anilines_tertiary"], | |
850 ["BrC1=CC2=C(C=C1)NC=C2", "Brc1ccc2[nH]ccc2c1", "Brc1ccc2[n-]ccc2c1", "Indole_pyrrole"], | |
851 ["O=c1cc[nH]cc1", "O=c1cc[nH]cc1", "O=c1cc[n-]cc1", "Aromatic_nitrogen_protonated"], | |
852 ["C-N=[N+]=[N@H]", "CN=[N+]=N", "CN=[N+]=[N-]", "Azide"], | |
853 ["BrC(C(O)=O)CBr", "O=C(O)C(Br)CBr", "O=C([O-])C(Br)CBr", "Carboxyl"], | |
854 ["NC(NN=O)=N", "NC(=[NH2+])NN=O", "N=C(N)NN=O", "AmidineGuanidine1"], | |
855 ["C(F)(F)(F)C(=O)NC(=O)C", "CC(=O)NC(=O)C(F)(F)F", "CC(=O)[N-]C(=O)C(F)(F)F", "Imide"], | |
856 ["O=C(C)NC(C)=O", "CC(=O)NC(C)=O", "CC(=O)[N-]C(C)=O", "Imide2"], | |
857 ["CC(C)(C)C(N(C)O)=O", "CN(O)C(=O)C(C)(C)C", "CN([O-])C(=O)C(C)(C)C", "N-hydroxyamide"], | |
858 ["C[N+](O)=O", "C[N+](=O)O", "C[N+](=O)[O-]", "Nitro"], | |
859 ["O=C1C=C(O)CC1", "O=C1C=C(O)CC1", "O=C1C=C([O-])CC1", "O=C-C=C-OH"], | |
860 ["C1CC1OO", "OOC1CC1", "[O-]OC1CC1", "Peroxide2"], | |
861 ["C(=O)OO", "O=COO", "O=CO[O-]", "Peroxide1"], | |
862 ["Brc1cc(O)cc(Br)c1", "Oc1cc(Br)cc(Br)c1", "[O-]c1cc(Br)cc(Br)c1", "Phenol"], | |
863 ["CC(=O)c1ccc(S)cc1", "CC(=O)c1ccc(S)cc1", "CC(=O)c1ccc([S-])cc1", "Phenyl_Thiol"], | |
864 ["C=CCOc1ccc(C(=O)O)cc1", "C=CCOc1ccc(C(=O)O)cc1", "C=CCOc1ccc(C(=O)[O-])cc1", "Phenyl_carboxyl"], | |
865 ["COP(=O)(O)OC", "COP(=O)(O)OC", "COP(=O)([O-])OC", "Phosphate_diester"], | |
866 ["CP(C)(=O)O", "CP(C)(=O)O", "CP(C)(=O)[O-]", "Phosphinic_acid"], | |
867 ["CC(C)OP(C)(=O)O", "CC(C)OP(C)(=O)O", "CC(C)OP(C)(=O)[O-]", "Phosphonate_ester"], | |
868 ["CC1(C)OC(=O)NC1=O", "CC1(C)OC(=O)NC1=O", "CC1(C)OC(=O)[N-]C1=O", "Ringed_imide1"], | |
869 ["O=C(N1)C=CC1=O", "O=C1C=CC(=O)N1", "O=C1C=CC(=O)[N-]1", "Ringed_imide2"], | |
870 ["O=S(OC)(O)=O", "COS(=O)(=O)O", "COS(=O)(=O)[O-]", "Sulfate"], | |
871 ["COc1ccc(S(=O)O)cc1", "COc1ccc(S(=O)O)cc1", "COc1ccc(S(=O)[O-])cc1", "Sulfinic_acid"], | |
872 ["CS(N)(=O)=O", "CS(N)(=O)=O", "CS([NH-])(=O)=O", "Sulfonamide"], | |
873 ["CC(=O)CSCCS(O)(=O)=O", "CC(=O)CSCCS(=O)(=O)O", "CC(=O)CSCCS(=O)(=O)[O-]", "Sulfonate"], | |
874 ["CC(=O)S", "CC(=O)S", "CC(=O)[S-]", "Thioic_acid"], | |
875 ["C(C)(C)(C)(S)", "CC(C)(C)S", "CC(C)(C)[S-]", "Thiol"], | |
876 ["Brc1cc[nH+]cc1", "Brc1cc[nH+]cc1", "Brc1ccncc1", "Aromatic_nitrogen_unprotonated"], | |
877 ["C=C(O)c1c(C)cc(C)cc1C", "C=C(O)c1c(C)cc(C)cc1C", "C=C([O-])c1c(C)cc(C)cc1C", "Vinyl_alcohol"], | |
878 ["CC(=O)ON", "CC(=O)O[NH3+]", "CC(=O)ON", "Primary_hydroxyl_amine"] | |
879 ] | |
880 | |
881 smis_phos = [ | |
882 ["O=P(O)(O)OCCCC", "CCCCOP(=O)(O)O", "CCCCOP(=O)([O-])O", "CCCCOP(=O)([O-])[O-]", "Phosphate"], | |
883 ["CC(P(O)(O)=O)C", "CC(C)P(=O)(O)O", "CC(C)P(=O)([O-])O", "CC(C)P(=O)([O-])[O-]", "Phosphonate"] | |
884 ] | |
885 | |
886 # Load the average pKa values. | |
887 average_pkas = {l.split()[0].replace("*", ""):float(l.split()[3]) for l in open("site_substructures.smarts") if l.split()[0] not in ["Phosphate", "Phosphonate"]} | |
888 average_pkas_phos = {l.split()[0].replace("*", ""):[float(l.split()[3]), float(l.split()[6])] for l in open("site_substructures.smarts") if l.split()[0] in ["Phosphate", "Phosphonate"]} | |
889 | |
890 print("Running Tests") | |
891 print("=============") | |
892 print("") | |
893 | |
894 print("Very Acidic (pH -10000000)") | |
895 print("--------------------------") | |
896 print("") | |
897 | |
898 args = { | |
899 "min_ph": -10000000, | |
900 "max_ph": -10000000, | |
901 "pka_precision": 0.5, | |
902 "smiles": "", | |
903 "label_states": True | |
904 } | |
905 | |
906 for smi, protonated, deprotonated, category in smis: | |
907 args["smiles"] = smi | |
908 TestFuncs.test_check(args, [protonated], ["PROTONATED"]) | |
909 | |
910 for smi, protonated, mix, deprotonated, category in smis_phos: | |
911 args["smiles"] = smi | |
912 TestFuncs.test_check(args, [protonated], ["PROTONATED"]) | |
913 | |
914 args["min_ph"] = 10000000 | |
915 args["max_ph"] = 10000000 | |
916 | |
917 print("") | |
918 print("Very Basic (pH 10000000)") | |
919 print("------------------------") | |
920 print("") | |
921 | |
922 for smi, protonated, deprotonated, category in smis: | |
923 args["smiles"] = smi | |
924 TestFuncs.test_check(args, [deprotonated], ["DEPROTONATED"]) | |
925 | |
926 for smi, protonated, mix, deprotonated, category in smis_phos: | |
927 args["smiles"] = smi | |
928 TestFuncs.test_check(args, [deprotonated], ["DEPROTONATED"]) | |
929 | |
930 print("") | |
931 print("pH is Category pKa") | |
932 print("------------------") | |
933 print("") | |
934 | |
935 for smi, protonated, deprotonated, category in smis: | |
936 avg_pka = average_pkas[category] | |
937 | |
938 args["smiles"] = smi | |
939 args["min_ph"] = avg_pka | |
940 args["max_ph"] = avg_pka | |
941 | |
942 TestFuncs.test_check(args, [protonated, deprotonated], ["BOTH"]) | |
943 | |
944 for smi, protonated, mix, deprotonated, category in smis_phos: | |
945 args["smiles"] = smi | |
946 | |
947 avg_pka = average_pkas_phos[category][0] | |
948 args["min_ph"] = avg_pka | |
949 args["max_ph"] = avg_pka | |
950 | |
951 TestFuncs.test_check(args, [mix, protonated], ["BOTH"]) | |
952 | |
953 avg_pka = average_pkas_phos[category][1] | |
954 args["min_ph"] = avg_pka | |
955 args["max_ph"] = avg_pka | |
956 | |
957 TestFuncs.test_check(args, [mix, deprotonated], ["DEPROTONATED", "DEPROTONATED"]) | |
958 | |
959 avg_pka = 0.5 * (average_pkas_phos[category][0] + average_pkas_phos[category][1]) | |
960 args["min_ph"] = avg_pka | |
961 args["max_ph"] = avg_pka | |
962 args["pka_precision"] = 5 # Should give all three | |
963 | |
964 TestFuncs.test_check(args, [mix, deprotonated, protonated], ["BOTH", "BOTH"]) | |
965 | |
966 @staticmethod | |
967 def test_check(args, expected_output, labels): | |
968 """Tests most ionizable groups. The ones that can only loose or gain a single proton. | |
969 | |
970 :param args: The arguments to pass to protonate() | |
971 :param expected_output: A list of the expected SMILES-strings output. | |
972 :param labels: The labels. A list containing combo of BOTH, PROTONATED, | |
973 DEPROTONATED. | |
974 :raises Exception: Wrong number of states produced. | |
975 :raises Exception: Unexpected output SMILES. | |
976 :raises Exception: Wrong labels. | |
977 """ | |
978 | |
979 output = list(Protonate(args)) | |
980 output = [o.split() for o in output] | |
981 | |
982 num_states = len(expected_output) | |
983 | |
984 if (len(output) != num_states): | |
985 msg = args["smiles"] + " should have " + str(num_states) + \ | |
986 " states at at pH " + str(args["min_ph"]) + ": " + str(output) | |
987 print(msg) | |
988 raise Exception(msg) | |
989 | |
990 if (len(set([l[0] for l in output]) - set(expected_output)) != 0): | |
991 msg = args["smiles"] + " is not " + " AND ".join(expected_output) + \ | |
992 " at pH " + str(args["min_ph"]) + " - " + str(args["max_ph"]) + \ | |
993 "; it is " + " AND ".join([l[0] for l in output]) | |
994 print(msg) | |
995 raise Exception(msg) | |
996 | |
997 if (len(set([l[1] for l in output]) - set(labels)) != 0): | |
998 msg = args["smiles"] + " not labeled as " + " AND ".join(labels) + \ | |
999 "; it is " + " AND ".join([l[1] for l in output]) | |
1000 print(msg) | |
1001 raise Exception(msg) | |
1002 | |
1003 ph_range = sorted(list(set([args["min_ph"], args["max_ph"]]))) | |
1004 ph_range_str = "(" + " - ".join("{0:.2f}".format(n) for n in ph_range) + ")" | |
1005 print("(CORRECT) " + ph_range_str.ljust(10) + " " + args["smiles"] + " => " + " AND ".join([l[0] for l in output])) | |
1006 | |
1007 def run(**kwargs): | |
1008 """A helpful, importable function for those who want to call Dimorphite-DL | |
1009 from another Python script rather than the command line. Note that this | |
1010 function accepts keyword arguments that match the command-line parameters | |
1011 exactly. If you want to pass and return a list of RDKit Mol objects, import | |
1012 run_with_mol_list() instead. | |
1013 | |
1014 :param **kwargs: For a complete description, run dimorphite_dl.py from the | |
1015 command line with the -h option. | |
1016 :type kwargs: dict | |
1017 """ | |
1018 | |
1019 # Run the main function with the specified arguments. | |
1020 main(kwargs) | |
1021 | |
1022 def run_with_mol_list(mol_lst, **kwargs): | |
1023 """A helpful, importable function for those who want to call Dimorphite-DL | |
1024 from another Python script rather than the command line. Note that this | |
1025 function is for passing Dimorphite-DL a list of RDKit Mol objects, together | |
1026 with command-line parameters. If you want to use only the same parameters | |
1027 that you would use from the command line, import run() instead. | |
1028 | |
1029 :param mol_lst: A list of rdkit.Chem.rdchem.Mol objects. | |
1030 :type mol_lst: list | |
1031 :raises Exception: If the **kwargs includes "smiles", "smiles_file", | |
1032 "output_file", or "test" parameters. | |
1033 :return: A list of properly protonated rdkit.Chem.rdchem.Mol objects. | |
1034 :rtype: list | |
1035 """ | |
1036 | |
1037 # Do a quick check to make sure the user input makes sense. | |
1038 for bad_arg in ["smiles", "smiles_file", "output_file", "test"]: | |
1039 if bad_arg in kwargs: | |
1040 msg = "You're using Dimorphite-DL's run_with_mol_list(mol_lst, " + \ | |
1041 "**kwargs) function, but you also passed the \"" + \ | |
1042 bad_arg + "\" argument. Did you mean to use the " + \ | |
1043 "run(**kwargs) function instead?" | |
1044 print(msg) | |
1045 raise Exception(msg) | |
1046 | |
1047 # Set the return_as_list flag so main() will return the protonated smiles | |
1048 # as a list. | |
1049 kwargs["return_as_list"] = True | |
1050 | |
1051 # Having reviewed the code, it will be very difficult to rewrite it so | |
1052 # that a list of Mol objects can be used directly. Intead, convert this | |
1053 # list of mols to smiles and pass that. Not efficient, but it will work. | |
1054 protonated_smiles_and_props = [] | |
1055 for m in mol_lst: | |
1056 props = m.GetPropsAsDict() | |
1057 kwargs["smiles"] = Chem.MolToSmiles(m, isomericSmiles=True) | |
1058 protonated_smiles_and_props.extend( | |
1059 [(s.split("\t")[0], props) for s in main(kwargs)] | |
1060 ) | |
1061 | |
1062 # Now convert the list of protonated smiles strings back to RDKit Mol | |
1063 # objects. Also, add back in the properties from the original mol objects. | |
1064 mols = [] | |
1065 for s, props in protonated_smiles_and_props: | |
1066 m = Chem.MolFromSmiles(s) | |
1067 if m: | |
1068 for prop, val in props.items(): | |
1069 if type(val) is int: | |
1070 m.SetIntProp(prop, val) | |
1071 elif type(val) is float: | |
1072 m.SetDoubleProp(prop, val) | |
1073 elif type(val) is bool: | |
1074 m.SetBoolProp(prop, val) | |
1075 else: | |
1076 m.SetProp(prop, str(val)) | |
1077 mols.append(m) | |
1078 else: | |
1079 UtilFuncs.eprint("WARNING: Could not process molecule with SMILES string " + s + " and properties " + str(props)) | |
1080 | |
1081 return mols | |
1082 | |
1083 if __name__ == "__main__": | |
1084 main() |