Mercurial > repos > bgruening > glimmer3
view glimmer_wo_icm.xml @ 2:b1ad88bbc5fa draft default tip
Uploaded
author | bgruening |
---|---|
date | Mon, 12 Aug 2013 11:55:07 -0400 |
parents | 841357e0acbf |
children |
line wrap: on
line source
<tool id="glimmer_not-knowlegde-based" name="Glimmer3" version="0.2"> <description>Predict ORFs in prokaryotic genomes (not knowlegde-based)</description> <requirements> <requirement type="package" version="3.02b">glimmer</requirement> <requirement type="package" version="1.61">biopython</requirement> </requirements> <command interpreter="python"> glimmer_wo_icm.py $input #if $report: $prediction #else: "None" #end if #if $detailed_report: $detailed #else: "None" #end if $overlap $gene_length $threshold $linear $genes_output </command> <inputs> <param name="input" type="data" format="fasta" label="Genome sequence" /> <param name="overlap" type="integer" value="0" label="Set maximum overlap length. Overlaps this short or shorter are ignored." /> <param name="gene_length" type="integer" value="110" label="Set minimum gene length." /> <param name="threshold" type="integer" value="30" label="Set threshold score for calling as gene. If the in-frame score >= N, then the region is given a number and considered a potential gene." /> <param name="linear" type="boolean" truevalue="true" falsevalue="false" checked="true" label="Assume linear rather than circular genome, i.e., no wraparound" /> <param name="detailed_report" type="boolean" truevalue="" falsevalue="" checked="false" label="Output a detailed gene prediction report as separate file" /> <param name="report" type="boolean" truevalue="" falsevalue="" checked="false" label="Report the classic glimmer table output" /> </inputs> <outputs> <data name="genes_output" format="fasta" label="Glimmer3 on ${on_string} (Gene Prediction FASTA)" /> <data name="prediction" format="txt" label="Glimmer3 on ${on_string} (Gene Prediction table)"> <filter>report == True</filter> </data> <data name="detailed" format="txt" label="Glimmer3 on ${on_string} (detailed report)"> <filter>detailed_report == True</filter> </data> </outputs> <tests> <test> <param name="input" value="streptomyces_Tue6071_plasmid_genomic.fasta" /> <param name="overlap" value="0" /> <param name="gene_length" value="110" /> <param name="threshold" value="30" /> <param name="linear" value="true" /> <param name="detailed_report" value="" /> <param name="report" value="" /> <output name="genes_output" file="glimmer_wo_icm_trans-table-11_plasmid_genomic.fasta" ftype="fasta" /> </test> </tests> <help> **What it does** This tool predicts open reading frames (orfs) from a given DNA Sequence. That tool is not knowlegde-based. The recommended way is to use a trained Glimmer3 with ICM model. Use the knowlegde-based version for that and insert/generate a training set. ----- **Glimmer Overview** :: ************** ************** ************** ************** * * * * * * * * * long-orfs * ===> * Extract * ===> * build-icm * ===> * glimmer3 * * * * * * * * * ************** ************** ************** ************** ----- **Example** Suppose you have the following DNA sequences:: >SQ Sequence 8667507 BP; 1203558 A; 3121252 C; 3129638 G; 1213059 T; 0 other; cccgcggagcgggtaccacatcgctgcgcgatgtgcgagcgaacacccgggctgcgcccg ggtgttgcgctcccgctccgcgggagcgctggcgggacgctgcgcgtcccgctcaccaag cccgcttcgcgggcttggtgacgctccgtccgctgcgcttccggagttgcggggcttcgc cccgctaaccctgggcctcgcttcgctccgccttgggcctgcggcgggtccgctgcgctc ccccgcctcaagggcccttccggctgcgcctccaggacccaaccgcttgcgcgggcctgg ....... Running this tool will produce a FASTA file with predicted genes and glimmer output files like the following:: >SQ Sequence 8667507 BP; 1203558 A; 3121252 C; 3129638 G; 1213059 T; 0 other; orf00001 577 699 +1 5.24 orf00003 800 1123 +2 5.18 orf00004 1144 3813 +1 10.62 orf00006 3857 6220 +2 6.07 orf00007 6226 7173 +1 1.69 orf00008 7187 9307 +2 8.95 orf00009 9424 10410 +1 8.29 orf00010 10515 11363 +3 7.00 orf00011 11812 11964 +1 2.80 orf00012 12360 13457 +3 4.80 orf00013 14379 14044 -1 7.41 orf00015 15029 14739 -3 12.43 orf00016 15066 15227 +3 1.91 orf00020 16061 15351 -3 2.83 orf00021 17513 17391 -3 2.20 orf00023 17529 17675 +3 0.11 ------- **References** A.L. Delcher, K.A. Bratke, E.C. Powers, and S.L. Salzberg. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics (Advance online version) (2007). </help> </tool>