comparison glimmerHMM/glimmerhmm_tabular_to_sequence.py @ 0:c9699375fcf6 draft

planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/glimmer_hmm commit 0dc67759bcbdf5a8a285ded9ba751340d741fe63
author bgruening
date Wed, 13 Jul 2016 10:55:48 -0400
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:c9699375fcf6
1 #!/usr/bin/env python
2 """Convert GlimmerHMM gene predictions into protein sequences.
3
4 This works with the GlimmerHMM specific output format:
5
6 12 1 + Initial 10748 10762 15
7 12 2 + Internal 10940 10971 32
8 12 3 + Internal 11035 11039 5
9 12 4 + Internal 11072 11110 39
10 12 5 + Internal 11146 11221 76
11 12 6 + Terminal 11265 11388 124
12
13 http://www.cbcb.umd.edu/software/GlimmerHMM/
14
15 Modified version of the converter from Brad Chapman: https://github.com/chapmanb/bcbb/blob/master/biopython/glimmer_to_proteins.py
16
17 Usage:
18 glimmer_to_proteins.py <glimmer output> <ref fasta> <output file> <convert to protein ... False|True>
19 """
20
21 import sys
22 import os
23 import operator
24
25 from Bio import SeqIO
26 from Bio.SeqRecord import SeqRecord
27
28 def main(glimmer_file, ref_file, out_file, to_protein):
29 with open(ref_file) as in_handle:
30 ref_rec = SeqIO.read(in_handle, "fasta")
31
32 base, ext = os.path.splitext(glimmer_file)
33
34 with open(out_file, "w") as out_handle:
35 SeqIO.write(protein_recs(glimmer_file, ref_rec, to_protein), out_handle, "fasta")
36
37 def protein_recs(glimmer_file, ref_rec, to_protein):
38 """Generate protein records
39 """
40 with open(glimmer_file) as in_handle:
41 for gene_num, exons, strand in glimmer_predictions(in_handle):
42 seq_exons = []
43 for start, end in exons:
44 seq_exons.append(ref_rec.seq[start:end])
45 gene_seq = reduce(operator.add, seq_exons)
46 if strand == '-':
47 gene_seq = gene_seq.reverse_complement()
48 if to_protein:
49 yield SeqRecord(gene_seq.translate(), gene_num, "", "")
50 else:
51 yield SeqRecord(gene_seq, gene_num, "", "")
52
53 def glimmer_predictions(in_handle):
54 """Parse Glimmer output, generating a exons and strand for each prediction.
55 """
56 # read the header
57 while 1:
58 line = in_handle.readline()
59 if line.startswith(" # #"):
60 break
61 in_handle.readline()
62 # read gene predictions one at a time
63 cur_exons, cur_gene_num, cur_strand = ([], None, None)
64 while 1:
65 line = in_handle.readline()
66 if not line:
67 break
68 parts = line.strip().split()
69 # new exon
70 if len(parts) == 0:
71 yield cur_gene_num, cur_exons, cur_strand
72 cur_exons, cur_gene_num, cur_strand = ([], None, None)
73 else:
74 this_gene_num = parts[0]
75 this_strand = parts[2]
76 this_start = int(parts[4]) - 1 # 1 based
77 this_end = int(parts[5])
78 if cur_gene_num is None:
79 cur_gene_num = this_gene_num
80 cur_strand = this_strand
81 else:
82 assert cur_gene_num == this_gene_num
83 assert cur_strand == this_strand
84 cur_exons.append((this_start, this_end))
85 if len(cur_exons) > 0:
86 yield cur_gene_num, cur_exons, cur_strand
87
88 if __name__ == "__main__":
89 if len(sys.argv) != 5:
90 print __doc__
91 sys.exit()
92 main(*sys.argv[1:])