Mercurial > repos > bgruening > glimmer_hmm
view glimmerHMM/BCBio/GFF/GFFParser.py @ 0:c9699375fcf6 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/glimmer_hmm commit 0dc67759bcbdf5a8a285ded9ba751340d741fe63
author | bgruening |
---|---|
date | Wed, 13 Jul 2016 10:55:48 -0400 |
parents | |
children |
line wrap: on
line source
"""Parse GFF files into features attached to Biopython SeqRecord objects. This deals with GFF3 formatted files, a tab delimited format for storing sequence features and annotations: http://www.sequenceontology.org/gff3.shtml It will also deal with older GFF versions (GTF/GFF2): http://www.sanger.ac.uk/Software/formats/GFF/GFF_Spec.shtml http://mblab.wustl.edu/GTF22.html The implementation utilizes map/reduce parsing of GFF using Disco. Disco (http://discoproject.org) is a Map-Reduce framework for Python utilizing Erlang for parallelization. The code works on a single processor without Disco using the same architecture. """ import os import copy import re import collections import urllib import itertools # Make defaultdict compatible with versions of python older than 2.4 try: collections.defaultdict except AttributeError: import _utils collections.defaultdict = _utils.defaultdict from Bio.Seq import Seq, UnknownSeq from Bio.SeqRecord import SeqRecord from Bio.SeqFeature import SeqFeature, FeatureLocation from Bio import SeqIO def _gff_line_map(line, params): """Map part of Map-Reduce; parses a line of GFF into a dictionary. Given an input line from a GFF file, this: - decides if the file passes our filtering limits - if so: - breaks it into component elements - determines the type of attribute (flat, parent, child or annotation) - generates a dictionary of GFF info which can be serialized as JSON """ gff3_kw_pat = re.compile("\w+=") def _split_keyvals(keyval_str): """Split key-value pairs in a GFF2, GTF and GFF3 compatible way. GFF3 has key value pairs like: count=9;gene=amx-2;sequence=SAGE:aacggagccg GFF2 and GTF have: Sequence "Y74C9A" ; Note "Clone Y74C9A; Genbank AC024206" name "fgenesh1_pg.C_chr_1000003"; transcriptId 869 """ quals = collections.defaultdict(list) if keyval_str is None: return quals # ensembl GTF has a stray semi-colon at the end if keyval_str[-1] == ';': keyval_str = keyval_str[:-1] # GFF2/GTF has a semi-colon with at least one space after it. # It can have spaces on both sides; wormbase does this. # GFF3 works with no spaces. # Split at the first one we can recognize as working parts = keyval_str.split(" ; ") if len(parts) == 1: parts = keyval_str.split("; ") if len(parts) == 1: parts = keyval_str.split(";") # check if we have GFF3 style key-vals (with =) is_gff2 = True if gff3_kw_pat.match(parts[0]): is_gff2 = False key_vals = [p.split('=') for p in parts] # otherwise, we are separated by a space with a key as the first item else: pieces = [] for p in parts: # fix misplaced semi-colons in keys in some GFF2 files if p and p[0] == ';': p = p[1:] pieces.append(p.strip().split(" ")) key_vals = [(p[0], " ".join(p[1:])) for p in pieces] for item in key_vals: # standard in-spec items are key=value if len(item) == 2: key, val = item # out-of-spec files can have just key values. We set an empty value # which will be changed to true later to standardize. else: assert len(item) == 1, item key = item[0] val = '' # remove quotes in GFF2 files if (len(val) > 0 and val[0] == '"' and val[-1] == '"'): val = val[1:-1] if val: quals[key].extend([v for v in val.split(',') if v]) # if we don't have a value, make this a key=True/False style # attribute else: quals[key].append('true') for key, vals in quals.items(): quals[key] = [urllib.unquote(v) for v in vals] return quals, is_gff2 def _nest_gff2_features(gff_parts): """Provide nesting of GFF2 transcript parts with transcript IDs. exons and coding sequences are mapped to a parent with a transcript_id in GFF2. This is implemented differently at different genome centers and this function attempts to resolve that and map things to the GFF3 way of doing them. """ # map protein or transcript ids to a parent for transcript_id in ["transcript_id", "transcriptId", "proteinId"]: try: gff_parts["quals"]["Parent"] = \ gff_parts["quals"][transcript_id] break except KeyError: pass # case for WormBase GFF -- everything labelled as Transcript or CDS for flat_name in ["Transcript", "CDS"]: if gff_parts["quals"].has_key(flat_name): # parent types if gff_parts["type"] in [flat_name]: if not gff_parts["id"]: gff_parts["id"] = gff_parts["quals"][flat_name][0] gff_parts["quals"]["ID"] = [gff_parts["id"]] # children types elif gff_parts["type"] in ["intron", "exon", "three_prime_UTR", "coding_exon", "five_prime_UTR", "CDS", "stop_codon", "start_codon"]: gff_parts["quals"]["Parent"] = gff_parts["quals"][flat_name] break return gff_parts strand_map = {'+' : 1, '-' : -1, '?' : None, None: None} line = line.strip() if line[:2] == "##": return [('directive', line[2:])] elif line and line[0] != "#": parts = line.split('\t') should_do = True if params.limit_info: for limit_name, limit_values in params.limit_info.items(): cur_id = tuple([parts[i] for i in params.filter_info[limit_name]]) if cur_id not in limit_values: should_do = False break if should_do: assert len(parts) >= 8, line # not python2.4 compatible but easier to understand #gff_parts = [(None if p == '.' else p) for p in parts] gff_parts = [] for p in parts: if p == ".": gff_parts.append(None) else: gff_parts.append(p) gff_info = dict() # collect all of the base qualifiers for this item if len(parts) > 8: quals, is_gff2 = _split_keyvals(gff_parts[8]) else: quals, is_gff2 = dict(), False gff_info["is_gff2"] = is_gff2 if gff_parts[1]: quals["source"].append(gff_parts[1]) if gff_parts[5]: quals["score"].append(gff_parts[5]) if gff_parts[7]: quals["phase"].append(gff_parts[7]) gff_info['quals'] = dict(quals) gff_info['rec_id'] = gff_parts[0] # if we are describing a location, then we are a feature if gff_parts[3] and gff_parts[4]: gff_info['location'] = [int(gff_parts[3]) - 1, int(gff_parts[4])] gff_info['type'] = gff_parts[2] gff_info['id'] = quals.get('ID', [''])[0] gff_info['strand'] = strand_map.get(gff_parts[6], None) if is_gff2: gff_info = _nest_gff2_features(gff_info) # features that have parents need to link so we can pick up # the relationship if gff_info['quals'].has_key('Parent'): # check for self referential parent/child relationships # remove the ID, which is not useful for p in gff_info['quals']['Parent']: if p == gff_info['id']: gff_info['id'] = '' del gff_info['quals']['ID'] break final_key = 'child' elif gff_info['id']: final_key = 'parent' # Handle flat features else: final_key = 'feature' # otherwise, associate these annotations with the full record else: final_key = 'annotation' if params.jsonify: return [(final_key, simplejson.dumps(gff_info))] else: return [(final_key, gff_info)] return [] def _gff_line_reduce(map_results, out, params): """Reduce part of Map-Reduce; combines results of parsed features. """ final_items = dict() for gff_type, final_val in map_results: if params.jsonify and gff_type not in ['directive']: final_val = simplejson.loads(final_val) try: final_items[gff_type].append(final_val) except KeyError: final_items[gff_type] = [final_val] for key, vals in final_items.items(): if params.jsonify: vals = simplejson.dumps(vals) out.add(key, vals) class _MultiIDRemapper: """Provide an ID remapping for cases where a parent has a non-unique ID. Real life GFF3 cases have non-unique ID attributes, which we fix here by using the unique sequence region to assign children to the right parent. """ def __init__(self, base_id, all_parents): self._base_id = base_id self._parents = all_parents def remap_id(self, feature_dict): rstart, rend = feature_dict['location'] for index, parent in enumerate(self._parents): pstart, pend = parent['location'] if rstart >= pstart and rend <= pend: if index > 0: return ("%s_%s" % (self._base_id, index + 1)) else: return self._base_id raise ValueError("Did not find remapped ID location: %s, %s, %s" % ( self._base_id, [p['location'] for p in self._parents], feature_dict['location'])) class _AbstractMapReduceGFF: """Base class providing general GFF parsing for local and remote classes. This class should be subclassed to provide a concrete class to parse GFF under specific conditions. These classes need to implement the _gff_process function, which returns a dictionary of SeqRecord information. """ def __init__(self, create_missing=True): """Initialize GFF parser create_missing - If True, create blank records for GFF ids not in the base_dict. If False, an error will be raised. """ self._create_missing = create_missing self._map_fn = _gff_line_map self._reduce_fn = _gff_line_reduce self._examiner = GFFExaminer() def _gff_process(self, gff_files, limit_info, target_lines=None): raise NotImplementedError("Derived class must define") def parse(self, gff_files, base_dict=None, limit_info=None): """Parse a GFF file, returning an iterator of SeqRecords. limit_info - A dictionary specifying the regions of the GFF file which should be extracted. This allows only relevant portions of a file to be parsed. base_dict - A base dictionary of SeqRecord objects which may be pre-populated with sequences and other features. The new features from the GFF file will be added to this dictionary. """ for rec in self.parse_in_parts(gff_files, base_dict, limit_info): yield rec def parse_in_parts(self, gff_files, base_dict=None, limit_info=None, target_lines=None): """Parse a region of a GFF file specified, returning info as generated. target_lines -- The number of lines in the file which should be used for each partial parse. This should be determined based on available memory. """ for results in self.parse_simple(gff_files, limit_info, target_lines): if base_dict is None: cur_dict = dict() else: cur_dict = copy.deepcopy(base_dict) cur_dict = self._results_to_features(cur_dict, results) all_ids = cur_dict.keys() all_ids.sort() for cur_id in all_ids: yield cur_dict[cur_id] def parse_simple(self, gff_files, limit_info=None, target_lines=1): """Simple parse which does not build or nest features. This returns a simple dictionary representation of each line in the GFF file. """ # gracefully handle a single file passed if not isinstance(gff_files, (list, tuple)): gff_files = [gff_files] limit_info = self._normalize_limit_info(limit_info) for results in self._gff_process(gff_files, limit_info, target_lines): yield results def _normalize_limit_info(self, limit_info): """Turn all limit information into tuples for identical comparisons. """ final_limit_info = {} if limit_info: for key, values in limit_info.items(): final_limit_info[key] = [] for v in values: if isinstance(v, str): final_limit_info[key].append((v,)) else: final_limit_info[key].append(tuple(v)) return final_limit_info def _results_to_features(self, base, results): """Add parsed dictionaries of results to Biopython SeqFeatures. """ base = self._add_annotations(base, results.get('annotation', [])) for feature in results.get('feature', []): (_, base) = self._add_toplevel_feature(base, feature) base = self._add_parent_child_features(base, results.get('parent', []), results.get('child', [])) base = self._add_seqs(base, results.get('fasta', [])) base = self._add_directives(base, results.get('directive', [])) return base def _add_directives(self, base, directives): """Handle any directives or meta-data in the GFF file. Relevant items are added as annotation meta-data to each record. """ dir_keyvals = collections.defaultdict(list) for directive in directives: parts = directive.split() if len(parts) > 1: key = parts[0] if len(parts) == 2: val = parts[1] else: val = tuple(parts[1:]) dir_keyvals[key].append(val) for key, vals in dir_keyvals.items(): for rec in base.values(): self._add_ann_to_rec(rec, key, vals) return base def _add_seqs(self, base, recs): """Add sequence information contained in the GFF3 to records. """ for rec in recs: if base.has_key(rec.id): base[rec.id].seq = rec.seq else: base[rec.id] = rec return base def _add_parent_child_features(self, base, parents, children): """Add nested features with parent child relationships. """ multi_remap = self._identify_dup_ids(parents) # add children features children_prep = collections.defaultdict(list) for child_dict in children: child_feature = self._get_feature(child_dict) for pindex, pid in enumerate(child_feature.qualifiers['Parent']): if multi_remap.has_key(pid): pid = multi_remap[pid].remap_id(child_dict) child_feature.qualifiers['Parent'][pindex] = pid children_prep[pid].append((child_dict['rec_id'], child_feature)) children = dict(children_prep) # add children to parents that exist for cur_parent_dict in parents: cur_id = cur_parent_dict['id'] if multi_remap.has_key(cur_id): cur_parent_dict['id'] = multi_remap[cur_id].remap_id( cur_parent_dict) cur_parent, base = self._add_toplevel_feature(base, cur_parent_dict) cur_parent, children = self._add_children_to_parent(cur_parent, children) # create parents for children without them (GFF2 or split/bad files) while len(children) > 0: parent_id, cur_children = itertools.islice(children.items(), 1).next() # one child, do not nest it if len(cur_children) == 1: rec_id, child = cur_children[0] loc = (child.location.nofuzzy_start, child.location.nofuzzy_end) rec, base = self._get_rec(base, dict(rec_id=rec_id, location=loc)) rec.features.append(child) del children[parent_id] else: cur_parent, base = self._add_missing_parent(base, parent_id, cur_children) cur_parent, children = self._add_children_to_parent(cur_parent, children) return base def _identify_dup_ids(self, parents): """Identify duplicated ID attributes in potential nested parents. According to the GFF3 spec ID attributes are supposed to be unique for a file, but this is not always true in practice. This looks for duplicates, and provides unique IDs sorted by locations. """ multi_ids = collections.defaultdict(list) for parent in parents: multi_ids[parent['id']].append(parent) multi_ids = [(mid, parents) for (mid, parents) in multi_ids.items() if len(parents) > 1] multi_remap = dict() for mid, parents in multi_ids: multi_remap[mid] = _MultiIDRemapper(mid, parents) return multi_remap def _add_children_to_parent(self, cur_parent, children): """Recursively add children to parent features. """ if children.has_key(cur_parent.id): cur_children = children[cur_parent.id] for rec_id, cur_child in cur_children: cur_child, children = self._add_children_to_parent(cur_child, children) cur_parent.location_operator = "join" cur_parent.sub_features.append(cur_child) del children[cur_parent.id] return cur_parent, children def _add_annotations(self, base, anns): """Add annotation data from the GFF file to records. """ # add these as a list of annotations, checking not to overwrite # current values for ann in anns: rec, base = self._get_rec(base, ann) for key, vals in ann['quals'].items(): self._add_ann_to_rec(rec, key, vals) return base def _add_ann_to_rec(self, rec, key, vals): """Add a key/value annotation to the given SeqRecord. """ if rec.annotations.has_key(key): try: rec.annotations[key].extend(vals) except AttributeError: rec.annotations[key] = [rec.annotations[key]] + vals else: rec.annotations[key] = vals def _get_rec(self, base, info_dict): """Retrieve a record to add features to. """ max_loc = info_dict.get('location', (0, 1))[1] try: cur_rec = base[info_dict['rec_id']] # update generated unknown sequences with the expected maximum length if isinstance(cur_rec.seq, UnknownSeq): cur_rec.seq._length = max([max_loc, cur_rec.seq._length]) return cur_rec, base except KeyError: if self._create_missing: new_rec = SeqRecord(UnknownSeq(max_loc), info_dict['rec_id']) base[info_dict['rec_id']] = new_rec return new_rec, base else: raise def _add_missing_parent(self, base, parent_id, cur_children): """Add a new feature that is missing from the GFF file. """ base_rec_id = list(set(c[0] for c in cur_children)) assert len(base_rec_id) == 1 feature_dict = dict(id=parent_id, strand=None, type="inferred_parent", quals=dict(ID=[parent_id]), rec_id=base_rec_id[0]) coords = [(c.location.nofuzzy_start, c.location.nofuzzy_end) for r, c in cur_children] feature_dict["location"] = (min([c[0] for c in coords]), max([c[1] for c in coords])) return self._add_toplevel_feature(base, feature_dict) def _add_toplevel_feature(self, base, feature_dict): """Add a toplevel non-nested feature to the appropriate record. """ new_feature = self._get_feature(feature_dict) rec, base = self._get_rec(base, feature_dict) rec.features.append(new_feature) return new_feature, base def _get_feature(self, feature_dict): """Retrieve a Biopython feature from our dictionary representation. """ location = FeatureLocation(*feature_dict['location']) new_feature = SeqFeature(location, feature_dict['type'], id=feature_dict['id'], strand=feature_dict['strand']) new_feature.qualifiers = feature_dict['quals'] return new_feature def _parse_fasta(self, in_handle): """Parse FASTA sequence information contained in the GFF3 file. """ return list(SeqIO.parse(in_handle, "fasta")) class _GFFParserLocalOut: """Provide a collector for local GFF MapReduce file parsing. """ def __init__(self, smart_breaks=False): self._items = dict() self._smart_breaks = smart_breaks self._missing_keys = collections.defaultdict(int) self._last_parent = None self.can_break = True self.num_lines = 0 def add(self, key, vals): if self._smart_breaks: # if we are not GFF2 we expect parents and break # based on not having missing ones if key == 'directive': if vals[0] == '#': self.can_break = True self._last_parent = None elif not vals[0].get("is_gff2", False): self._update_missing_parents(key, vals) self.can_break = (len(self._missing_keys) == 0) # break when we are done with stretches of child features elif key != 'child': self.can_break = True self._last_parent = None # break when we have lots of child features in a row # and change between parents else: cur_parent = vals[0]["quals"]["Parent"][0] if (self._last_parent): self.can_break = (cur_parent != self._last_parent) self._last_parent = cur_parent self.num_lines += 1 try: self._items[key].extend(vals) except KeyError: self._items[key] = vals def _update_missing_parents(self, key, vals): # smart way of deciding if we can break this. # if this is too much, can go back to not breaking in the # middle of children if key in ["child"]: for val in vals: for p_id in val["quals"]["Parent"]: self._missing_keys[p_id] += 1 for val in vals: try: del self._missing_keys[val["quals"]["ID"][0]] except KeyError: pass def has_items(self): return len(self._items) > 0 def get_results(self): self._last_parent = None return self._items class GFFParser(_AbstractMapReduceGFF): """Local GFF parser providing standardized parsing of GFF3 and GFF2 files. """ def __init__(self, line_adjust_fn=None, create_missing=True): _AbstractMapReduceGFF.__init__(self, create_missing=create_missing) self._line_adjust_fn = line_adjust_fn def _gff_process(self, gff_files, limit_info, target_lines): """Process GFF addition without any parallelization. In addition to limit filtering, this accepts a target_lines attribute which provides a number of lines to parse before returning results. This allows partial parsing of a file to prevent memory issues. """ line_gen = self._file_line_generator(gff_files) for out in self._lines_to_out_info(line_gen, limit_info, target_lines): yield out def _file_line_generator(self, gff_files): """Generate single lines from a set of GFF files. """ for gff_file in gff_files: if hasattr(gff_file, "read"): need_close = False in_handle = gff_file else: need_close = True in_handle = open(gff_file) found_seqs = False while 1: line = in_handle.readline() if not line: break yield line if need_close: in_handle.close() def _lines_to_out_info(self, line_iter, limit_info=None, target_lines=None): """Generate SeqRecord and SeqFeatures from GFF file lines. """ params = self._examiner._get_local_params(limit_info) out_info = _GFFParserLocalOut((target_lines is not None and target_lines > 1)) found_seqs = False for line in line_iter: results = self._map_fn(line, params) if self._line_adjust_fn and results: if results[0][0] not in ['directive']: results = [(results[0][0], self._line_adjust_fn(results[0][1]))] self._reduce_fn(results, out_info, params) if (target_lines and out_info.num_lines >= target_lines and out_info.can_break): yield out_info.get_results() out_info = _GFFParserLocalOut((target_lines is not None and target_lines > 1)) if (results and results[0][0] == 'directive' and results[0][1] == 'FASTA'): found_seqs = True break class FakeHandle: def __init__(self, line_iter): self._iter = line_iter def read(self): return "".join(l for l in self._iter) def readline(self): try: return self._iter.next() except StopIteration: return "" if found_seqs: fasta_recs = self._parse_fasta(FakeHandle(line_iter)) out_info.add('fasta', fasta_recs) if out_info.has_items(): yield out_info.get_results() class DiscoGFFParser(_AbstractMapReduceGFF): """GFF Parser with parallelization through Disco (http://discoproject.org. """ def __init__(self, disco_host, create_missing=True): """Initialize parser. disco_host - Web reference to a Disco host which will be used for parallelizing the GFF reading job. """ _AbstractMapReduceGFF.__init__(self, create_missing=create_missing) self._disco_host = disco_host def _gff_process(self, gff_files, limit_info, target_lines=None): """Process GFF addition, using Disco to parallelize the process. """ assert target_lines is None, "Cannot split parallelized jobs" # make these imports local; only need them when using disco import simplejson import disco # absolute path names unless they are special disco files full_files = [] for f in gff_files: if f.split(":")[0] != "disco": full_files.append(os.path.abspath(f)) else: full_files.append(f) results = disco.job(self._disco_host, name="gff_reader", input=full_files, params=disco.Params(limit_info=limit_info, jsonify=True, filter_info=self._examiner._filter_info), required_modules=["simplejson", "collections", "re"], map=self._map_fn, reduce=self._reduce_fn) processed = dict() for out_key, out_val in disco.result_iterator(results): processed[out_key] = simplejson.loads(out_val) yield processed def parse(gff_files, base_dict=None, limit_info=None, target_lines=None): """High level interface to parse GFF files into SeqRecords and SeqFeatures. """ parser = GFFParser() for rec in parser.parse_in_parts(gff_files, base_dict, limit_info, target_lines): yield rec def parse_simple(gff_files, limit_info=None): """Parse GFF files as line by line dictionary of parts. """ parser = GFFParser() for rec in parser.parse_simple(gff_files, limit_info=limit_info): yield rec["child"][0] def _file_or_handle(fn): """Decorator to handle either an input handle or a file. """ def _file_or_handle_inside(*args, **kwargs): in_file = args[1] if hasattr(in_file, "read"): need_close = False in_handle = in_file else: need_close = True in_handle = open(in_file) args = (args[0], in_handle) + args[2:] out = fn(*args, **kwargs) if need_close: in_handle.close() return out return _file_or_handle_inside class GFFExaminer: """Provide high level details about a GFF file to refine parsing. GFF is a spec and is provided by many different centers. Real life files will present the same information in slightly different ways. Becoming familiar with the file you are dealing with is the best way to extract the information you need. This class provides high level summary details to help in learning. """ def __init__(self): self._filter_info = dict(gff_id = [0], gff_source_type = [1, 2], gff_source = [1], gff_type = [2]) def _get_local_params(self, limit_info=None): class _LocalParams: def __init__(self): self.jsonify = False params = _LocalParams() params.limit_info = limit_info params.filter_info = self._filter_info return params @_file_or_handle def available_limits(self, gff_handle): """Return dictionary information on possible limits for this file. This returns a nested dictionary with the following structure: keys -- names of items to filter by values -- dictionary with: keys -- filter choice value -- counts of that filter in this file Not a parallelized map-reduce implementation. """ cur_limits = dict() for filter_key in self._filter_info.keys(): cur_limits[filter_key] = collections.defaultdict(int) for line in gff_handle: # when we hit FASTA sequences, we are done with annotations if line.startswith("##FASTA"): break # ignore empty and comment lines if line.strip() and line.strip()[0] != "#": parts = [p.strip() for p in line.split('\t')] assert len(parts) == 9, line for filter_key, cur_indexes in self._filter_info.items(): cur_id = tuple([parts[i] for i in cur_indexes]) cur_limits[filter_key][cur_id] += 1 # get rid of the default dicts final_dict = dict() for key, value_dict in cur_limits.items(): if len(key) == 1: key = key[0] final_dict[key] = dict(value_dict) gff_handle.close() return final_dict @_file_or_handle def parent_child_map(self, gff_handle): """Provide a mapping of parent to child relationships in the file. Returns a dictionary of parent child relationships: keys -- tuple of (source, type) for each parent values -- tuple of (source, type) as children of that parent Not a parallelized map-reduce implementation. """ # collect all of the parent and child types mapped to IDs parent_sts = dict() child_sts = collections.defaultdict(list) for line in gff_handle: # when we hit FASTA sequences, we are done with annotations if line.startswith("##FASTA"): break if line.strip(): line_type, line_info = _gff_line_map(line, self._get_local_params())[0] if (line_type == 'parent' or (line_type == 'child' and line_info['id'])): parent_sts[line_info['id']] = ( line_info['quals']['source'][0], line_info['type']) if line_type == 'child': for parent_id in line_info['quals']['Parent']: child_sts[parent_id].append(( line_info['quals']['source'][0], line_info['type'])) #print parent_sts, child_sts # generate a dictionary of the unique final type relationships pc_map = collections.defaultdict(list) for parent_id, parent_type in parent_sts.items(): for child_type in child_sts[parent_id]: pc_map[parent_type].append(child_type) pc_final_map = dict() for ptype, ctypes in pc_map.items(): unique_ctypes = list(set(ctypes)) unique_ctypes.sort() pc_final_map[ptype] = unique_ctypes return pc_final_map