Mercurial > repos > bgruening > keras_batch_models
comparison search_model_validation.py @ 0:000a3868885b draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 60f0fbc0eafd7c11bc60fb6c77f2937782efd8a9-dirty
| author | bgruening |
|---|---|
| date | Fri, 09 Aug 2019 07:17:20 -0400 |
| parents | |
| children | ed4d31f47d65 |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:000a3868885b |
|---|---|
| 1 import argparse | |
| 2 import collections | |
| 3 import imblearn | |
| 4 import joblib | |
| 5 import json | |
| 6 import numpy as np | |
| 7 import pandas as pd | |
| 8 import pickle | |
| 9 import skrebate | |
| 10 import sklearn | |
| 11 import sys | |
| 12 import xgboost | |
| 13 import warnings | |
| 14 from imblearn import under_sampling, over_sampling, combine | |
| 15 from scipy.io import mmread | |
| 16 from mlxtend import classifier, regressor | |
| 17 from sklearn.base import clone | |
| 18 from sklearn import (cluster, compose, decomposition, ensemble, | |
| 19 feature_extraction, feature_selection, | |
| 20 gaussian_process, kernel_approximation, metrics, | |
| 21 model_selection, naive_bayes, neighbors, | |
| 22 pipeline, preprocessing, svm, linear_model, | |
| 23 tree, discriminant_analysis) | |
| 24 from sklearn.exceptions import FitFailedWarning | |
| 25 from sklearn.model_selection._validation import _score, cross_validate | |
| 26 from sklearn.model_selection import _search, _validation | |
| 27 | |
| 28 from galaxy_ml.utils import (SafeEval, get_cv, get_scoring, load_model, | |
| 29 read_columns, try_get_attr, get_module) | |
| 30 | |
| 31 | |
| 32 _fit_and_score = try_get_attr('galaxy_ml.model_validations', '_fit_and_score') | |
| 33 setattr(_search, '_fit_and_score', _fit_and_score) | |
| 34 setattr(_validation, '_fit_and_score', _fit_and_score) | |
| 35 | |
| 36 N_JOBS = int(__import__('os').environ.get('GALAXY_SLOTS', 1)) | |
| 37 CACHE_DIR = './cached' | |
| 38 NON_SEARCHABLE = ('n_jobs', 'pre_dispatch', 'memory', '_path', | |
| 39 'nthread', 'callbacks') | |
| 40 ALLOWED_CALLBACKS = ('EarlyStopping', 'TerminateOnNaN', 'ReduceLROnPlateau', | |
| 41 'CSVLogger', 'None') | |
| 42 | |
| 43 | |
| 44 def _eval_search_params(params_builder): | |
| 45 search_params = {} | |
| 46 | |
| 47 for p in params_builder['param_set']: | |
| 48 search_list = p['sp_list'].strip() | |
| 49 if search_list == '': | |
| 50 continue | |
| 51 | |
| 52 param_name = p['sp_name'] | |
| 53 if param_name.lower().endswith(NON_SEARCHABLE): | |
| 54 print("Warning: `%s` is not eligible for search and was " | |
| 55 "omitted!" % param_name) | |
| 56 continue | |
| 57 | |
| 58 if not search_list.startswith(':'): | |
| 59 safe_eval = SafeEval(load_scipy=True, load_numpy=True) | |
| 60 ev = safe_eval(search_list) | |
| 61 search_params[param_name] = ev | |
| 62 else: | |
| 63 # Have `:` before search list, asks for estimator evaluatio | |
| 64 safe_eval_es = SafeEval(load_estimators=True) | |
| 65 search_list = search_list[1:].strip() | |
| 66 # TODO maybe add regular express check | |
| 67 ev = safe_eval_es(search_list) | |
| 68 preprocessings = ( | |
| 69 preprocessing.StandardScaler(), preprocessing.Binarizer(), | |
| 70 preprocessing.MaxAbsScaler(), | |
| 71 preprocessing.Normalizer(), preprocessing.MinMaxScaler(), | |
| 72 preprocessing.PolynomialFeatures(), | |
| 73 preprocessing.RobustScaler(), feature_selection.SelectKBest(), | |
| 74 feature_selection.GenericUnivariateSelect(), | |
| 75 feature_selection.SelectPercentile(), | |
| 76 feature_selection.SelectFpr(), feature_selection.SelectFdr(), | |
| 77 feature_selection.SelectFwe(), | |
| 78 feature_selection.VarianceThreshold(), | |
| 79 decomposition.FactorAnalysis(random_state=0), | |
| 80 decomposition.FastICA(random_state=0), | |
| 81 decomposition.IncrementalPCA(), | |
| 82 decomposition.KernelPCA(random_state=0, n_jobs=N_JOBS), | |
| 83 decomposition.LatentDirichletAllocation( | |
| 84 random_state=0, n_jobs=N_JOBS), | |
| 85 decomposition.MiniBatchDictionaryLearning( | |
| 86 random_state=0, n_jobs=N_JOBS), | |
| 87 decomposition.MiniBatchSparsePCA( | |
| 88 random_state=0, n_jobs=N_JOBS), | |
| 89 decomposition.NMF(random_state=0), | |
| 90 decomposition.PCA(random_state=0), | |
| 91 decomposition.SparsePCA(random_state=0, n_jobs=N_JOBS), | |
| 92 decomposition.TruncatedSVD(random_state=0), | |
| 93 kernel_approximation.Nystroem(random_state=0), | |
| 94 kernel_approximation.RBFSampler(random_state=0), | |
| 95 kernel_approximation.AdditiveChi2Sampler(), | |
| 96 kernel_approximation.SkewedChi2Sampler(random_state=0), | |
| 97 cluster.FeatureAgglomeration(), | |
| 98 skrebate.ReliefF(n_jobs=N_JOBS), | |
| 99 skrebate.SURF(n_jobs=N_JOBS), | |
| 100 skrebate.SURFstar(n_jobs=N_JOBS), | |
| 101 skrebate.MultiSURF(n_jobs=N_JOBS), | |
| 102 skrebate.MultiSURFstar(n_jobs=N_JOBS), | |
| 103 imblearn.under_sampling.ClusterCentroids( | |
| 104 random_state=0, n_jobs=N_JOBS), | |
| 105 imblearn.under_sampling.CondensedNearestNeighbour( | |
| 106 random_state=0, n_jobs=N_JOBS), | |
| 107 imblearn.under_sampling.EditedNearestNeighbours( | |
| 108 random_state=0, n_jobs=N_JOBS), | |
| 109 imblearn.under_sampling.RepeatedEditedNearestNeighbours( | |
| 110 random_state=0, n_jobs=N_JOBS), | |
| 111 imblearn.under_sampling.AllKNN(random_state=0, n_jobs=N_JOBS), | |
| 112 imblearn.under_sampling.InstanceHardnessThreshold( | |
| 113 random_state=0, n_jobs=N_JOBS), | |
| 114 imblearn.under_sampling.NearMiss( | |
| 115 random_state=0, n_jobs=N_JOBS), | |
| 116 imblearn.under_sampling.NeighbourhoodCleaningRule( | |
| 117 random_state=0, n_jobs=N_JOBS), | |
| 118 imblearn.under_sampling.OneSidedSelection( | |
| 119 random_state=0, n_jobs=N_JOBS), | |
| 120 imblearn.under_sampling.RandomUnderSampler( | |
| 121 random_state=0), | |
| 122 imblearn.under_sampling.TomekLinks( | |
| 123 random_state=0, n_jobs=N_JOBS), | |
| 124 imblearn.over_sampling.ADASYN(random_state=0, n_jobs=N_JOBS), | |
| 125 imblearn.over_sampling.RandomOverSampler(random_state=0), | |
| 126 imblearn.over_sampling.SMOTE(random_state=0, n_jobs=N_JOBS), | |
| 127 imblearn.over_sampling.SVMSMOTE(random_state=0, n_jobs=N_JOBS), | |
| 128 imblearn.over_sampling.BorderlineSMOTE( | |
| 129 random_state=0, n_jobs=N_JOBS), | |
| 130 imblearn.over_sampling.SMOTENC( | |
| 131 categorical_features=[], random_state=0, n_jobs=N_JOBS), | |
| 132 imblearn.combine.SMOTEENN(random_state=0), | |
| 133 imblearn.combine.SMOTETomek(random_state=0)) | |
| 134 newlist = [] | |
| 135 for obj in ev: | |
| 136 if obj is None: | |
| 137 newlist.append(None) | |
| 138 elif obj == 'all_0': | |
| 139 newlist.extend(preprocessings[0:35]) | |
| 140 elif obj == 'sk_prep_all': # no KernalCenter() | |
| 141 newlist.extend(preprocessings[0:7]) | |
| 142 elif obj == 'fs_all': | |
| 143 newlist.extend(preprocessings[7:14]) | |
| 144 elif obj == 'decomp_all': | |
| 145 newlist.extend(preprocessings[14:25]) | |
| 146 elif obj == 'k_appr_all': | |
| 147 newlist.extend(preprocessings[25:29]) | |
| 148 elif obj == 'reb_all': | |
| 149 newlist.extend(preprocessings[30:35]) | |
| 150 elif obj == 'imb_all': | |
| 151 newlist.extend(preprocessings[35:54]) | |
| 152 elif type(obj) is int and -1 < obj < len(preprocessings): | |
| 153 newlist.append(preprocessings[obj]) | |
| 154 elif hasattr(obj, 'get_params'): # user uploaded object | |
| 155 if 'n_jobs' in obj.get_params(): | |
| 156 newlist.append(obj.set_params(n_jobs=N_JOBS)) | |
| 157 else: | |
| 158 newlist.append(obj) | |
| 159 else: | |
| 160 sys.exit("Unsupported estimator type: %r" % (obj)) | |
| 161 | |
| 162 search_params[param_name] = newlist | |
| 163 | |
| 164 return search_params | |
| 165 | |
| 166 | |
| 167 def main(inputs, infile_estimator, infile1, infile2, | |
| 168 outfile_result, outfile_object=None, | |
| 169 outfile_weights=None, groups=None, | |
| 170 ref_seq=None, intervals=None, targets=None, | |
| 171 fasta_path=None): | |
| 172 """ | |
| 173 Parameter | |
| 174 --------- | |
| 175 inputs : str | |
| 176 File path to galaxy tool parameter | |
| 177 | |
| 178 infile_estimator : str | |
| 179 File path to estimator | |
| 180 | |
| 181 infile1 : str | |
| 182 File path to dataset containing features | |
| 183 | |
| 184 infile2 : str | |
| 185 File path to dataset containing target values | |
| 186 | |
| 187 outfile_result : str | |
| 188 File path to save the results, either cv_results or test result | |
| 189 | |
| 190 outfile_object : str, optional | |
| 191 File path to save searchCV object | |
| 192 | |
| 193 outfile_weights : str, optional | |
| 194 File path to save model weights | |
| 195 | |
| 196 groups : str | |
| 197 File path to dataset containing groups labels | |
| 198 | |
| 199 ref_seq : str | |
| 200 File path to dataset containing genome sequence file | |
| 201 | |
| 202 intervals : str | |
| 203 File path to dataset containing interval file | |
| 204 | |
| 205 targets : str | |
| 206 File path to dataset compressed target bed file | |
| 207 | |
| 208 fasta_path : str | |
| 209 File path to dataset containing fasta file | |
| 210 """ | |
| 211 warnings.simplefilter('ignore') | |
| 212 | |
| 213 with open(inputs, 'r') as param_handler: | |
| 214 params = json.load(param_handler) | |
| 215 | |
| 216 params_builder = params['search_schemes']['search_params_builder'] | |
| 217 | |
| 218 with open(infile_estimator, 'rb') as estimator_handler: | |
| 219 estimator = load_model(estimator_handler) | |
| 220 estimator_params = estimator.get_params() | |
| 221 | |
| 222 # store read dataframe object | |
| 223 loaded_df = {} | |
| 224 | |
| 225 input_type = params['input_options']['selected_input'] | |
| 226 # tabular input | |
| 227 if input_type == 'tabular': | |
| 228 header = 'infer' if params['input_options']['header1'] else None | |
| 229 column_option = (params['input_options']['column_selector_options_1'] | |
| 230 ['selected_column_selector_option']) | |
| 231 if column_option in ['by_index_number', 'all_but_by_index_number', | |
| 232 'by_header_name', 'all_but_by_header_name']: | |
| 233 c = params['input_options']['column_selector_options_1']['col1'] | |
| 234 else: | |
| 235 c = None | |
| 236 | |
| 237 df_key = infile1 + repr(header) | |
| 238 df = pd.read_csv(infile1, sep='\t', header=header, | |
| 239 parse_dates=True) | |
| 240 loaded_df[df_key] = df | |
| 241 | |
| 242 X = read_columns(df, c=c, c_option=column_option).astype(float) | |
| 243 # sparse input | |
| 244 elif input_type == 'sparse': | |
| 245 X = mmread(open(infile1, 'r')) | |
| 246 | |
| 247 # fasta_file input | |
| 248 elif input_type == 'seq_fasta': | |
| 249 pyfaidx = get_module('pyfaidx') | |
| 250 sequences = pyfaidx.Fasta(fasta_path) | |
| 251 n_seqs = len(sequences.keys()) | |
| 252 X = np.arange(n_seqs)[:, np.newaxis] | |
| 253 for param in estimator_params.keys(): | |
| 254 if param.endswith('fasta_path'): | |
| 255 estimator.set_params( | |
| 256 **{param: fasta_path}) | |
| 257 break | |
| 258 else: | |
| 259 raise ValueError( | |
| 260 "The selected estimator doesn't support " | |
| 261 "fasta file input! Please consider using " | |
| 262 "KerasGBatchClassifier with " | |
| 263 "FastaDNABatchGenerator/FastaProteinBatchGenerator " | |
| 264 "or having GenomeOneHotEncoder/ProteinOneHotEncoder " | |
| 265 "in pipeline!") | |
| 266 | |
| 267 elif input_type == 'refseq_and_interval': | |
| 268 path_params = { | |
| 269 'data_batch_generator__ref_genome_path': ref_seq, | |
| 270 'data_batch_generator__intervals_path': intervals, | |
| 271 'data_batch_generator__target_path': targets | |
| 272 } | |
| 273 estimator.set_params(**path_params) | |
| 274 n_intervals = sum(1 for line in open(intervals)) | |
| 275 X = np.arange(n_intervals)[:, np.newaxis] | |
| 276 | |
| 277 # Get target y | |
| 278 header = 'infer' if params['input_options']['header2'] else None | |
| 279 column_option = (params['input_options']['column_selector_options_2'] | |
| 280 ['selected_column_selector_option2']) | |
| 281 if column_option in ['by_index_number', 'all_but_by_index_number', | |
| 282 'by_header_name', 'all_but_by_header_name']: | |
| 283 c = params['input_options']['column_selector_options_2']['col2'] | |
| 284 else: | |
| 285 c = None | |
| 286 | |
| 287 df_key = infile2 + repr(header) | |
| 288 if df_key in loaded_df: | |
| 289 infile2 = loaded_df[df_key] | |
| 290 else: | |
| 291 infile2 = pd.read_csv(infile2, sep='\t', | |
| 292 header=header, parse_dates=True) | |
| 293 loaded_df[df_key] = infile2 | |
| 294 | |
| 295 y = read_columns( | |
| 296 infile2, | |
| 297 c=c, | |
| 298 c_option=column_option, | |
| 299 sep='\t', | |
| 300 header=header, | |
| 301 parse_dates=True) | |
| 302 if len(y.shape) == 2 and y.shape[1] == 1: | |
| 303 y = y.ravel() | |
| 304 if input_type == 'refseq_and_interval': | |
| 305 estimator.set_params( | |
| 306 data_batch_generator__features=y.ravel().tolist()) | |
| 307 y = None | |
| 308 # end y | |
| 309 | |
| 310 optimizer = params['search_schemes']['selected_search_scheme'] | |
| 311 optimizer = getattr(model_selection, optimizer) | |
| 312 | |
| 313 # handle gridsearchcv options | |
| 314 options = params['search_schemes']['options'] | |
| 315 | |
| 316 if groups: | |
| 317 header = 'infer' if (options['cv_selector']['groups_selector'] | |
| 318 ['header_g']) else None | |
| 319 column_option = (options['cv_selector']['groups_selector'] | |
| 320 ['column_selector_options_g'] | |
| 321 ['selected_column_selector_option_g']) | |
| 322 if column_option in ['by_index_number', 'all_but_by_index_number', | |
| 323 'by_header_name', 'all_but_by_header_name']: | |
| 324 c = (options['cv_selector']['groups_selector'] | |
| 325 ['column_selector_options_g']['col_g']) | |
| 326 else: | |
| 327 c = None | |
| 328 | |
| 329 df_key = groups + repr(header) | |
| 330 if df_key in loaded_df: | |
| 331 groups = loaded_df[df_key] | |
| 332 | |
| 333 groups = read_columns( | |
| 334 groups, | |
| 335 c=c, | |
| 336 c_option=column_option, | |
| 337 sep='\t', | |
| 338 header=header, | |
| 339 parse_dates=True) | |
| 340 groups = groups.ravel() | |
| 341 options['cv_selector']['groups_selector'] = groups | |
| 342 | |
| 343 splitter, groups = get_cv(options.pop('cv_selector')) | |
| 344 options['cv'] = splitter | |
| 345 options['n_jobs'] = N_JOBS | |
| 346 primary_scoring = options['scoring']['primary_scoring'] | |
| 347 options['scoring'] = get_scoring(options['scoring']) | |
| 348 if options['error_score']: | |
| 349 options['error_score'] = 'raise' | |
| 350 else: | |
| 351 options['error_score'] = np.NaN | |
| 352 if options['refit'] and isinstance(options['scoring'], dict): | |
| 353 options['refit'] = primary_scoring | |
| 354 if 'pre_dispatch' in options and options['pre_dispatch'] == '': | |
| 355 options['pre_dispatch'] = None | |
| 356 | |
| 357 # del loaded_df | |
| 358 del loaded_df | |
| 359 | |
| 360 # handle memory | |
| 361 memory = joblib.Memory(location=CACHE_DIR, verbose=0) | |
| 362 # cache iraps_core fits could increase search speed significantly | |
| 363 if estimator.__class__.__name__ == 'IRAPSClassifier': | |
| 364 estimator.set_params(memory=memory) | |
| 365 else: | |
| 366 # For iraps buried in pipeline | |
| 367 for p, v in estimator_params.items(): | |
| 368 if p.endswith('memory'): | |
| 369 # for case of `__irapsclassifier__memory` | |
| 370 if len(p) > 8 and p[:-8].endswith('irapsclassifier'): | |
| 371 # cache iraps_core fits could increase search | |
| 372 # speed significantly | |
| 373 new_params = {p: memory} | |
| 374 estimator.set_params(**new_params) | |
| 375 # security reason, we don't want memory being | |
| 376 # modified unexpectedly | |
| 377 elif v: | |
| 378 new_params = {p, None} | |
| 379 estimator.set_params(**new_params) | |
| 380 # For now, 1 CPU is suggested for iprasclassifier | |
| 381 elif p.endswith('n_jobs'): | |
| 382 new_params = {p: 1} | |
| 383 estimator.set_params(**new_params) | |
| 384 # for security reason, types of callbacks are limited | |
| 385 elif p.endswith('callbacks'): | |
| 386 for cb in v: | |
| 387 cb_type = cb['callback_selection']['callback_type'] | |
| 388 if cb_type not in ALLOWED_CALLBACKS: | |
| 389 raise ValueError( | |
| 390 "Prohibited callback type: %s!" % cb_type) | |
| 391 | |
| 392 param_grid = _eval_search_params(params_builder) | |
| 393 searcher = optimizer(estimator, param_grid, **options) | |
| 394 | |
| 395 # do nested split | |
| 396 split_mode = params['outer_split'].pop('split_mode') | |
| 397 # nested CV, outer cv using cross_validate | |
| 398 if split_mode == 'nested_cv': | |
| 399 outer_cv, _ = get_cv(params['outer_split']['cv_selector']) | |
| 400 | |
| 401 if options['error_score'] == 'raise': | |
| 402 rval = cross_validate( | |
| 403 searcher, X, y, scoring=options['scoring'], | |
| 404 cv=outer_cv, n_jobs=N_JOBS, verbose=0, | |
| 405 error_score=options['error_score']) | |
| 406 else: | |
| 407 warnings.simplefilter('always', FitFailedWarning) | |
| 408 with warnings.catch_warnings(record=True) as w: | |
| 409 try: | |
| 410 rval = cross_validate( | |
| 411 searcher, X, y, | |
| 412 scoring=options['scoring'], | |
| 413 cv=outer_cv, n_jobs=N_JOBS, | |
| 414 verbose=0, | |
| 415 error_score=options['error_score']) | |
| 416 except ValueError: | |
| 417 pass | |
| 418 for warning in w: | |
| 419 print(repr(warning.message)) | |
| 420 | |
| 421 keys = list(rval.keys()) | |
| 422 for k in keys: | |
| 423 if k.startswith('test'): | |
| 424 rval['mean_' + k] = np.mean(rval[k]) | |
| 425 rval['std_' + k] = np.std(rval[k]) | |
| 426 if k.endswith('time'): | |
| 427 rval.pop(k) | |
| 428 rval = pd.DataFrame(rval) | |
| 429 rval = rval[sorted(rval.columns)] | |
| 430 rval.to_csv(path_or_buf=outfile_result, sep='\t', | |
| 431 header=True, index=False) | |
| 432 else: | |
| 433 if split_mode == 'train_test_split': | |
| 434 train_test_split = try_get_attr( | |
| 435 'galaxy_ml.model_validations', 'train_test_split') | |
| 436 # make sure refit is choosen | |
| 437 # this could be True for sklearn models, but not the case for | |
| 438 # deep learning models | |
| 439 if not options['refit'] and \ | |
| 440 not all(hasattr(estimator, attr) | |
| 441 for attr in ('config', 'model_type')): | |
| 442 warnings.warn("Refit is change to `True` for nested " | |
| 443 "validation!") | |
| 444 setattr(searcher, 'refit', True) | |
| 445 split_options = params['outer_split'] | |
| 446 | |
| 447 # splits | |
| 448 if split_options['shuffle'] == 'stratified': | |
| 449 split_options['labels'] = y | |
| 450 X, X_test, y, y_test = train_test_split(X, y, **split_options) | |
| 451 elif split_options['shuffle'] == 'group': | |
| 452 if groups is None: | |
| 453 raise ValueError("No group based CV option was " | |
| 454 "choosen for group shuffle!") | |
| 455 split_options['labels'] = groups | |
| 456 if y is None: | |
| 457 X, X_test, groups, _ =\ | |
| 458 train_test_split(X, groups, **split_options) | |
| 459 else: | |
| 460 X, X_test, y, y_test, groups, _ =\ | |
| 461 train_test_split(X, y, groups, **split_options) | |
| 462 else: | |
| 463 if split_options['shuffle'] == 'None': | |
| 464 split_options['shuffle'] = None | |
| 465 X, X_test, y, y_test =\ | |
| 466 train_test_split(X, y, **split_options) | |
| 467 # end train_test_split | |
| 468 | |
| 469 # shared by both train_test_split and non-split | |
| 470 if options['error_score'] == 'raise': | |
| 471 searcher.fit(X, y, groups=groups) | |
| 472 else: | |
| 473 warnings.simplefilter('always', FitFailedWarning) | |
| 474 with warnings.catch_warnings(record=True) as w: | |
| 475 try: | |
| 476 searcher.fit(X, y, groups=groups) | |
| 477 except ValueError: | |
| 478 pass | |
| 479 for warning in w: | |
| 480 print(repr(warning.message)) | |
| 481 | |
| 482 # no outer split | |
| 483 if split_mode == 'no': | |
| 484 # save results | |
| 485 cv_results = pd.DataFrame(searcher.cv_results_) | |
| 486 cv_results = cv_results[sorted(cv_results.columns)] | |
| 487 cv_results.to_csv(path_or_buf=outfile_result, sep='\t', | |
| 488 header=True, index=False) | |
| 489 | |
| 490 # train_test_split, output test result using best_estimator_ | |
| 491 # or rebuild the trained estimator using weights if applicable. | |
| 492 else: | |
| 493 scorer_ = searcher.scorer_ | |
| 494 if isinstance(scorer_, collections.Mapping): | |
| 495 is_multimetric = True | |
| 496 else: | |
| 497 is_multimetric = False | |
| 498 | |
| 499 best_estimator_ = getattr(searcher, 'best_estimator_', None) | |
| 500 if not best_estimator_: | |
| 501 raise ValueError("GridSearchCV object has no " | |
| 502 "`best_estimator_` when `refit`=False!") | |
| 503 | |
| 504 if best_estimator_.__class__.__name__ == 'KerasGBatchClassifier' \ | |
| 505 and hasattr(estimator.data_batch_generator, 'target_path'): | |
| 506 test_score = best_estimator_.evaluate( | |
| 507 X_test, scorer=scorer_, is_multimetric=is_multimetric) | |
| 508 else: | |
| 509 test_score = _score(best_estimator_, X_test, | |
| 510 y_test, scorer_, | |
| 511 is_multimetric=is_multimetric) | |
| 512 | |
| 513 if not is_multimetric: | |
| 514 test_score = {primary_scoring: test_score} | |
| 515 for key, value in test_score.items(): | |
| 516 test_score[key] = [value] | |
| 517 result_df = pd.DataFrame(test_score) | |
| 518 result_df.to_csv(path_or_buf=outfile_result, sep='\t', | |
| 519 header=True, index=False) | |
| 520 | |
| 521 memory.clear(warn=False) | |
| 522 | |
| 523 if outfile_object: | |
| 524 best_estimator_ = getattr(searcher, 'best_estimator_', None) | |
| 525 if not best_estimator_: | |
| 526 warnings.warn("GridSearchCV object has no attribute " | |
| 527 "'best_estimator_', because either it's " | |
| 528 "nested gridsearch or `refit` is False!") | |
| 529 return | |
| 530 | |
| 531 main_est = best_estimator_ | |
| 532 if isinstance(best_estimator_, pipeline.Pipeline): | |
| 533 main_est = best_estimator_.steps[-1][-1] | |
| 534 | |
| 535 if hasattr(main_est, 'model_') \ | |
| 536 and hasattr(main_est, 'save_weights'): | |
| 537 if outfile_weights: | |
| 538 main_est.save_weights(outfile_weights) | |
| 539 del main_est.model_ | |
| 540 del main_est.fit_params | |
| 541 del main_est.model_class_ | |
| 542 del main_est.validation_data | |
| 543 if getattr(main_est, 'data_generator_', None): | |
| 544 del main_est.data_generator_ | |
| 545 del main_est.data_batch_generator | |
| 546 | |
| 547 with open(outfile_object, 'wb') as output_handler: | |
| 548 pickle.dump(best_estimator_, output_handler, | |
| 549 pickle.HIGHEST_PROTOCOL) | |
| 550 | |
| 551 | |
| 552 if __name__ == '__main__': | |
| 553 aparser = argparse.ArgumentParser() | |
| 554 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | |
| 555 aparser.add_argument("-e", "--estimator", dest="infile_estimator") | |
| 556 aparser.add_argument("-X", "--infile1", dest="infile1") | |
| 557 aparser.add_argument("-y", "--infile2", dest="infile2") | |
| 558 aparser.add_argument("-O", "--outfile_result", dest="outfile_result") | |
| 559 aparser.add_argument("-o", "--outfile_object", dest="outfile_object") | |
| 560 aparser.add_argument("-w", "--outfile_weights", dest="outfile_weights") | |
| 561 aparser.add_argument("-g", "--groups", dest="groups") | |
| 562 aparser.add_argument("-r", "--ref_seq", dest="ref_seq") | |
| 563 aparser.add_argument("-b", "--intervals", dest="intervals") | |
| 564 aparser.add_argument("-t", "--targets", dest="targets") | |
| 565 aparser.add_argument("-f", "--fasta_path", dest="fasta_path") | |
| 566 args = aparser.parse_args() | |
| 567 | |
| 568 main(args.inputs, args.infile_estimator, args.infile1, args.infile2, | |
| 569 args.outfile_result, outfile_object=args.outfile_object, | |
| 570 outfile_weights=args.outfile_weights, groups=args.groups, | |
| 571 ref_seq=args.ref_seq, intervals=args.intervals, | |
| 572 targets=args.targets, fasta_path=args.fasta_path) |
