Mercurial > repos > bgruening > keras_model_builder
annotate test-data/named_steps.txt @ 11:5b35833076f0 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit d970dae980fbe349414fc0889f719d875d999c5b"
author | bgruening |
---|---|
date | Fri, 27 Aug 2021 10:06:48 +0000 |
parents | ed7c222e47e3 |
children | 624e2afa1313 |
rev | line source |
---|---|
5
ed7c222e47e3
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 5b2ac730ec6d3b762faa9034eddd19ad1b347476"
bgruening
parents:
0
diff
changeset
|
1 {'preprocessing_1': SelectKBest(k=10, score_func=<function f_regression at 0x11b4ba8c8>), 'estimator': XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=1, |
ed7c222e47e3
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 5b2ac730ec6d3b762faa9034eddd19ad1b347476"
bgruening
parents:
0
diff
changeset
|
2 colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0, |
ed7c222e47e3
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 5b2ac730ec6d3b762faa9034eddd19ad1b347476"
bgruening
parents:
0
diff
changeset
|
3 max_depth=3, min_child_weight=1, missing=nan, n_estimators=100, |
ed7c222e47e3
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 5b2ac730ec6d3b762faa9034eddd19ad1b347476"
bgruening
parents:
0
diff
changeset
|
4 n_jobs=1, nthread=None, objective='reg:linear', random_state=10, |
ed7c222e47e3
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 5b2ac730ec6d3b762faa9034eddd19ad1b347476"
bgruening
parents:
0
diff
changeset
|
5 reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None, |
ed7c222e47e3
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 5b2ac730ec6d3b762faa9034eddd19ad1b347476"
bgruening
parents:
0
diff
changeset
|
6 silent=True, subsample=1)} |