Mercurial > repos > bgruening > keras_model_config
comparison ml_visualization_ex.py @ 5:c3813c64d678 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 5b2ac730ec6d3b762faa9034eddd19ad1b347476"
author | bgruening |
---|---|
date | Mon, 16 Dec 2019 05:32:49 -0500 |
parents | bedbda03c573 |
children | 2d8478144bb2 |
comparison
equal
deleted
inserted
replaced
4:1f1fc37cfb42 | 5:c3813c64d678 |
---|---|
1 import argparse | 1 import argparse |
2 import json | 2 import json |
3 import matplotlib | |
4 import matplotlib.pyplot as plt | |
3 import numpy as np | 5 import numpy as np |
6 import os | |
4 import pandas as pd | 7 import pandas as pd |
5 import plotly | 8 import plotly |
6 import plotly.graph_objs as go | 9 import plotly.graph_objs as go |
7 import warnings | 10 import warnings |
8 | 11 |
15 from galaxy_ml.utils import load_model, read_columns, SafeEval | 18 from galaxy_ml.utils import load_model, read_columns, SafeEval |
16 | 19 |
17 | 20 |
18 safe_eval = SafeEval() | 21 safe_eval = SafeEval() |
19 | 22 |
23 # plotly default colors | |
24 default_colors = [ | |
25 '#1f77b4', # muted blue | |
26 '#ff7f0e', # safety orange | |
27 '#2ca02c', # cooked asparagus green | |
28 '#d62728', # brick red | |
29 '#9467bd', # muted purple | |
30 '#8c564b', # chestnut brown | |
31 '#e377c2', # raspberry yogurt pink | |
32 '#7f7f7f', # middle gray | |
33 '#bcbd22', # curry yellow-green | |
34 '#17becf' # blue-teal | |
35 ] | |
36 | |
37 | |
38 def visualize_pr_curve_plotly(df1, df2, pos_label, title=None): | |
39 """output pr-curve in html using plotly | |
40 | |
41 df1 : pandas.DataFrame | |
42 Containing y_true | |
43 df2 : pandas.DataFrame | |
44 Containing y_score | |
45 pos_label : None | |
46 The label of positive class | |
47 title : str | |
48 Plot title | |
49 """ | |
50 data = [] | |
51 for idx in range(df1.shape[1]): | |
52 y_true = df1.iloc[:, idx].values | |
53 y_score = df2.iloc[:, idx].values | |
54 | |
55 precision, recall, _ = precision_recall_curve( | |
56 y_true, y_score, pos_label=pos_label) | |
57 ap = average_precision_score( | |
58 y_true, y_score, pos_label=pos_label or 1) | |
59 | |
60 trace = go.Scatter( | |
61 x=recall, | |
62 y=precision, | |
63 mode='lines', | |
64 marker=dict( | |
65 color=default_colors[idx % len(default_colors)] | |
66 ), | |
67 name='%s (area = %.3f)' % (idx, ap) | |
68 ) | |
69 data.append(trace) | |
70 | |
71 layout = go.Layout( | |
72 xaxis=dict( | |
73 title='Recall', | |
74 linecolor='lightslategray', | |
75 linewidth=1 | |
76 ), | |
77 yaxis=dict( | |
78 title='Precision', | |
79 linecolor='lightslategray', | |
80 linewidth=1 | |
81 ), | |
82 title=dict( | |
83 text=title or 'Precision-Recall Curve', | |
84 x=0.5, | |
85 y=0.92, | |
86 xanchor='center', | |
87 yanchor='top' | |
88 ), | |
89 font=dict( | |
90 family="sans-serif", | |
91 size=11 | |
92 ), | |
93 # control backgroud colors | |
94 plot_bgcolor='rgba(255,255,255,0)' | |
95 ) | |
96 """ | |
97 legend=dict( | |
98 x=0.95, | |
99 y=0, | |
100 traceorder="normal", | |
101 font=dict( | |
102 family="sans-serif", | |
103 size=9, | |
104 color="black" | |
105 ), | |
106 bgcolor="LightSteelBlue", | |
107 bordercolor="Black", | |
108 borderwidth=2 | |
109 ),""" | |
110 | |
111 fig = go.Figure(data=data, layout=layout) | |
112 | |
113 plotly.offline.plot(fig, filename="output.html", auto_open=False) | |
114 # to be discovered by `from_work_dir` | |
115 os.rename('output.html', 'output') | |
116 | |
117 | |
118 def visualize_pr_curve_matplotlib(df1, df2, pos_label, title=None): | |
119 """visualize pr-curve using matplotlib and output svg image | |
120 """ | |
121 backend = matplotlib.get_backend() | |
122 if "inline" not in backend: | |
123 matplotlib.use("SVG") | |
124 plt.style.use('seaborn-colorblind') | |
125 plt.figure() | |
126 | |
127 for idx in range(df1.shape[1]): | |
128 y_true = df1.iloc[:, idx].values | |
129 y_score = df2.iloc[:, idx].values | |
130 | |
131 precision, recall, _ = precision_recall_curve( | |
132 y_true, y_score, pos_label=pos_label) | |
133 ap = average_precision_score( | |
134 y_true, y_score, pos_label=pos_label or 1) | |
135 | |
136 plt.step(recall, precision, 'r-', color="black", alpha=0.3, | |
137 lw=1, where="post", label='%s (area = %.3f)' % (idx, ap)) | |
138 | |
139 plt.xlim([0.0, 1.0]) | |
140 plt.ylim([0.0, 1.05]) | |
141 plt.xlabel('Recall') | |
142 plt.ylabel('Precision') | |
143 title = title or 'Precision-Recall Curve' | |
144 plt.title(title) | |
145 folder = os.getcwd() | |
146 plt.savefig(os.path.join(folder, "output.svg"), format="svg") | |
147 os.rename(os.path.join(folder, "output.svg"), | |
148 os.path.join(folder, "output")) | |
149 | |
150 | |
151 def visualize_roc_curve_plotly(df1, df2, pos_label, | |
152 drop_intermediate=True, | |
153 title=None): | |
154 """output roc-curve in html using plotly | |
155 | |
156 df1 : pandas.DataFrame | |
157 Containing y_true | |
158 df2 : pandas.DataFrame | |
159 Containing y_score | |
160 pos_label : None | |
161 The label of positive class | |
162 drop_intermediate : bool | |
163 Whether to drop some suboptimal thresholds | |
164 title : str | |
165 Plot title | |
166 """ | |
167 data = [] | |
168 for idx in range(df1.shape[1]): | |
169 y_true = df1.iloc[:, idx].values | |
170 y_score = df2.iloc[:, idx].values | |
171 | |
172 fpr, tpr, _ = roc_curve(y_true, y_score, pos_label=pos_label, | |
173 drop_intermediate=drop_intermediate) | |
174 roc_auc = auc(fpr, tpr) | |
175 | |
176 trace = go.Scatter( | |
177 x=fpr, | |
178 y=tpr, | |
179 mode='lines', | |
180 marker=dict( | |
181 color=default_colors[idx % len(default_colors)] | |
182 ), | |
183 name='%s (area = %.3f)' % (idx, roc_auc) | |
184 ) | |
185 data.append(trace) | |
186 | |
187 layout = go.Layout( | |
188 xaxis=dict( | |
189 title='False Positive Rate', | |
190 linecolor='lightslategray', | |
191 linewidth=1 | |
192 ), | |
193 yaxis=dict( | |
194 title='True Positive Rate', | |
195 linecolor='lightslategray', | |
196 linewidth=1 | |
197 ), | |
198 title=dict( | |
199 text=title or 'Receiver Operating Characteristic (ROC) Curve', | |
200 x=0.5, | |
201 y=0.92, | |
202 xanchor='center', | |
203 yanchor='top' | |
204 ), | |
205 font=dict( | |
206 family="sans-serif", | |
207 size=11 | |
208 ), | |
209 # control backgroud colors | |
210 plot_bgcolor='rgba(255,255,255,0)' | |
211 ) | |
212 """ | |
213 # legend=dict( | |
214 # x=0.95, | |
215 # y=0, | |
216 # traceorder="normal", | |
217 # font=dict( | |
218 # family="sans-serif", | |
219 # size=9, | |
220 # color="black" | |
221 # ), | |
222 # bgcolor="LightSteelBlue", | |
223 # bordercolor="Black", | |
224 # borderwidth=2 | |
225 # ), | |
226 """ | |
227 | |
228 fig = go.Figure(data=data, layout=layout) | |
229 | |
230 plotly.offline.plot(fig, filename="output.html", auto_open=False) | |
231 # to be discovered by `from_work_dir` | |
232 os.rename('output.html', 'output') | |
233 | |
234 | |
235 def visualize_roc_curve_matplotlib(df1, df2, pos_label, | |
236 drop_intermediate=True, | |
237 title=None): | |
238 """visualize roc-curve using matplotlib and output svg image | |
239 """ | |
240 backend = matplotlib.get_backend() | |
241 if "inline" not in backend: | |
242 matplotlib.use("SVG") | |
243 plt.style.use('seaborn-colorblind') | |
244 plt.figure() | |
245 | |
246 for idx in range(df1.shape[1]): | |
247 y_true = df1.iloc[:, idx].values | |
248 y_score = df2.iloc[:, idx].values | |
249 | |
250 fpr, tpr, _ = roc_curve(y_true, y_score, pos_label=pos_label, | |
251 drop_intermediate=drop_intermediate) | |
252 roc_auc = auc(fpr, tpr) | |
253 | |
254 plt.step(fpr, tpr, 'r-', color="black", alpha=0.3, lw=1, | |
255 where="post", label='%s (area = %.3f)' % (idx, roc_auc)) | |
256 | |
257 plt.xlim([0.0, 1.0]) | |
258 plt.ylim([0.0, 1.05]) | |
259 plt.xlabel('False Positive Rate') | |
260 plt.ylabel('True Positive Rate') | |
261 title = title or 'Receiver Operating Characteristic (ROC) Curve' | |
262 plt.title(title) | |
263 folder = os.getcwd() | |
264 plt.savefig(os.path.join(folder, "output.svg"), format="svg") | |
265 os.rename(os.path.join(folder, "output.svg"), | |
266 os.path.join(folder, "output")) | |
267 | |
20 | 268 |
21 def main(inputs, infile_estimator=None, infile1=None, | 269 def main(inputs, infile_estimator=None, infile1=None, |
22 infile2=None, outfile_result=None, | 270 infile2=None, outfile_result=None, |
23 outfile_object=None, groups=None, | 271 outfile_object=None, groups=None, |
24 ref_seq=None, intervals=None, | 272 ref_seq=None, intervals=None, |
69 with open(inputs, 'r') as param_handler: | 317 with open(inputs, 'r') as param_handler: |
70 params = json.load(param_handler) | 318 params = json.load(param_handler) |
71 | 319 |
72 title = params['plotting_selection']['title'].strip() | 320 title = params['plotting_selection']['title'].strip() |
73 plot_type = params['plotting_selection']['plot_type'] | 321 plot_type = params['plotting_selection']['plot_type'] |
322 plot_format = params['plotting_selection']['plot_format'] | |
323 | |
74 if plot_type == 'feature_importances': | 324 if plot_type == 'feature_importances': |
75 with open(infile_estimator, 'rb') as estimator_handler: | 325 with open(infile_estimator, 'rb') as estimator_handler: |
76 estimator = load_model(estimator_handler) | 326 estimator = load_model(estimator_handler) |
77 | 327 |
78 column_option = (params['plotting_selection'] | 328 column_option = (params['plotting_selection'] |
121 trace = go.Bar(x=feature_names[indices], | 371 trace = go.Bar(x=feature_names[indices], |
122 y=coefs[indices]) | 372 y=coefs[indices]) |
123 layout = go.Layout(title=title or "Feature Importances") | 373 layout = go.Layout(title=title or "Feature Importances") |
124 fig = go.Figure(data=[trace], layout=layout) | 374 fig = go.Figure(data=[trace], layout=layout) |
125 | 375 |
126 elif plot_type == 'pr_curve': | 376 plotly.offline.plot(fig, filename="output.html", |
127 df1 = pd.read_csv(infile1, sep='\t', header=None) | 377 auto_open=False) |
128 df2 = pd.read_csv(infile2, sep='\t', header=None) | 378 # to be discovered by `from_work_dir` |
129 | 379 os.rename('output.html', 'output') |
130 precision = {} | 380 |
131 recall = {} | 381 return 0 |
132 ap = {} | 382 |
383 elif plot_type in ('pr_curve', 'roc_curve'): | |
384 df1 = pd.read_csv(infile1, sep='\t', header='infer') | |
385 df2 = pd.read_csv(infile2, sep='\t', header='infer').astype(np.float32) | |
386 | |
387 minimum = params['plotting_selection']['report_minimum_n_positives'] | |
388 # filter out columns whose n_positives is beblow the threhold | |
389 if minimum: | |
390 mask = df1.sum(axis=0) >= minimum | |
391 df1 = df1.loc[:, mask] | |
392 df2 = df2.loc[:, mask] | |
133 | 393 |
134 pos_label = params['plotting_selection']['pos_label'].strip() \ | 394 pos_label = params['plotting_selection']['pos_label'].strip() \ |
135 or None | 395 or None |
136 for col in df1.columns: | 396 |
137 y_true = df1[col].values | 397 if plot_type == 'pr_curve': |
138 y_score = df2[col].values | 398 if plot_format == 'plotly_html': |
139 | 399 visualize_pr_curve_plotly(df1, df2, pos_label, title=title) |
140 precision[col], recall[col], _ = precision_recall_curve( | 400 else: |
141 y_true, y_score, pos_label=pos_label) | 401 visualize_pr_curve_matplotlib(df1, df2, pos_label, title) |
142 ap[col] = average_precision_score( | 402 else: # 'roc_curve' |
143 y_true, y_score, pos_label=pos_label or 1) | 403 drop_intermediate = (params['plotting_selection'] |
144 | 404 ['drop_intermediate']) |
145 if len(df1.columns) > 1: | 405 if plot_format == 'plotly_html': |
146 precision["micro"], recall["micro"], _ = precision_recall_curve( | 406 visualize_roc_curve_plotly(df1, df2, pos_label, |
147 df1.values.ravel(), df2.values.ravel(), pos_label=pos_label) | 407 drop_intermediate=drop_intermediate, |
148 ap['micro'] = average_precision_score( | 408 title=title) |
149 df1.values, df2.values, average='micro', | 409 else: |
150 pos_label=pos_label or 1) | 410 visualize_roc_curve_matplotlib( |
151 | 411 df1, df2, pos_label, |
152 data = [] | 412 drop_intermediate=drop_intermediate, |
153 for key in precision.keys(): | 413 title=title) |
154 trace = go.Scatter( | 414 |
155 x=recall[key], | 415 return 0 |
156 y=precision[key], | |
157 mode='lines', | |
158 name='%s (area = %.2f)' % (key, ap[key]) if key == 'micro' | |
159 else 'column %s (area = %.2f)' % (key, ap[key]) | |
160 ) | |
161 data.append(trace) | |
162 | |
163 layout = go.Layout( | |
164 title=title or "Precision-Recall curve", | |
165 xaxis=dict(title='Recall'), | |
166 yaxis=dict(title='Precision') | |
167 ) | |
168 | |
169 fig = go.Figure(data=data, layout=layout) | |
170 | |
171 elif plot_type == 'roc_curve': | |
172 df1 = pd.read_csv(infile1, sep='\t', header=None) | |
173 df2 = pd.read_csv(infile2, sep='\t', header=None) | |
174 | |
175 fpr = {} | |
176 tpr = {} | |
177 roc_auc = {} | |
178 | |
179 pos_label = params['plotting_selection']['pos_label'].strip() \ | |
180 or None | |
181 for col in df1.columns: | |
182 y_true = df1[col].values | |
183 y_score = df2[col].values | |
184 | |
185 fpr[col], tpr[col], _ = roc_curve( | |
186 y_true, y_score, pos_label=pos_label) | |
187 roc_auc[col] = auc(fpr[col], tpr[col]) | |
188 | |
189 if len(df1.columns) > 1: | |
190 fpr["micro"], tpr["micro"], _ = roc_curve( | |
191 df1.values.ravel(), df2.values.ravel(), pos_label=pos_label) | |
192 roc_auc['micro'] = auc(fpr["micro"], tpr["micro"]) | |
193 | |
194 data = [] | |
195 for key in fpr.keys(): | |
196 trace = go.Scatter( | |
197 x=fpr[key], | |
198 y=tpr[key], | |
199 mode='lines', | |
200 name='%s (area = %.2f)' % (key, roc_auc[key]) if key == 'micro' | |
201 else 'column %s (area = %.2f)' % (key, roc_auc[key]) | |
202 ) | |
203 data.append(trace) | |
204 | |
205 trace = go.Scatter(x=[0, 1], y=[0, 1], | |
206 mode='lines', | |
207 line=dict(color='black', dash='dash'), | |
208 showlegend=False) | |
209 data.append(trace) | |
210 | |
211 layout = go.Layout( | |
212 title=title or "Receiver operating characteristic curve", | |
213 xaxis=dict(title='False Positive Rate'), | |
214 yaxis=dict(title='True Positive Rate') | |
215 ) | |
216 | |
217 fig = go.Figure(data=data, layout=layout) | |
218 | 416 |
219 elif plot_type == 'rfecv_gridscores': | 417 elif plot_type == 'rfecv_gridscores': |
220 input_df = pd.read_csv(infile1, sep='\t', header='infer') | 418 input_df = pd.read_csv(infile1, sep='\t', header='infer') |
221 scores = input_df.iloc[:, 0] | 419 scores = input_df.iloc[:, 0] |
222 steps = params['plotting_selection']['steps'].strip() | 420 steps = params['plotting_selection']['steps'].strip() |
229 mode='lines' | 427 mode='lines' |
230 ) | 428 ) |
231 layout = go.Layout( | 429 layout = go.Layout( |
232 xaxis=dict(title="Number of features selected"), | 430 xaxis=dict(title="Number of features selected"), |
233 yaxis=dict(title="Cross validation score"), | 431 yaxis=dict(title="Cross validation score"), |
234 title=title or None | 432 title=dict( |
235 ) | 433 text=title or None, |
434 x=0.5, | |
435 y=0.92, | |
436 xanchor='center', | |
437 yanchor='top' | |
438 ), | |
439 font=dict( | |
440 family="sans-serif", | |
441 size=11 | |
442 ), | |
443 # control backgroud colors | |
444 plot_bgcolor='rgba(255,255,255,0)' | |
445 ) | |
446 """ | |
447 # legend=dict( | |
448 # x=0.95, | |
449 # y=0, | |
450 # traceorder="normal", | |
451 # font=dict( | |
452 # family="sans-serif", | |
453 # size=9, | |
454 # color="black" | |
455 # ), | |
456 # bgcolor="LightSteelBlue", | |
457 # bordercolor="Black", | |
458 # borderwidth=2 | |
459 # ), | |
460 """ | |
236 | 461 |
237 fig = go.Figure(data=[data], layout=layout) | 462 fig = go.Figure(data=[data], layout=layout) |
463 plotly.offline.plot(fig, filename="output.html", | |
464 auto_open=False) | |
465 # to be discovered by `from_work_dir` | |
466 os.rename('output.html', 'output') | |
467 | |
468 return 0 | |
238 | 469 |
239 elif plot_type == 'learning_curve': | 470 elif plot_type == 'learning_curve': |
240 input_df = pd.read_csv(infile1, sep='\t', header='infer') | 471 input_df = pd.read_csv(infile1, sep='\t', header='infer') |
241 plot_std_err = params['plotting_selection']['plot_std_err'] | 472 plot_std_err = params['plotting_selection']['plot_std_err'] |
242 data1 = go.Scatter( | 473 data1 = go.Scatter( |
262 title='No. of samples' | 493 title='No. of samples' |
263 ), | 494 ), |
264 yaxis=dict( | 495 yaxis=dict( |
265 title='Performance Score' | 496 title='Performance Score' |
266 ), | 497 ), |
267 title=title or 'Learning Curve' | 498 # modify these configurations to customize image |
268 ) | 499 title=dict( |
500 text=title or 'Learning Curve', | |
501 x=0.5, | |
502 y=0.92, | |
503 xanchor='center', | |
504 yanchor='top' | |
505 ), | |
506 font=dict( | |
507 family="sans-serif", | |
508 size=11 | |
509 ), | |
510 # control backgroud colors | |
511 plot_bgcolor='rgba(255,255,255,0)' | |
512 ) | |
513 """ | |
514 # legend=dict( | |
515 # x=0.95, | |
516 # y=0, | |
517 # traceorder="normal", | |
518 # font=dict( | |
519 # family="sans-serif", | |
520 # size=9, | |
521 # color="black" | |
522 # ), | |
523 # bgcolor="LightSteelBlue", | |
524 # bordercolor="Black", | |
525 # borderwidth=2 | |
526 # ), | |
527 """ | |
528 | |
269 fig = go.Figure(data=[data1, data2], layout=layout) | 529 fig = go.Figure(data=[data1, data2], layout=layout) |
530 plotly.offline.plot(fig, filename="output.html", | |
531 auto_open=False) | |
532 # to be discovered by `from_work_dir` | |
533 os.rename('output.html', 'output') | |
534 | |
535 return 0 | |
270 | 536 |
271 elif plot_type == 'keras_plot_model': | 537 elif plot_type == 'keras_plot_model': |
272 with open(model_config, 'r') as f: | 538 with open(model_config, 'r') as f: |
273 model_str = f.read() | 539 model_str = f.read() |
274 model = model_from_json(model_str) | 540 model = model_from_json(model_str) |
275 plot_model(model, to_file="output.png") | 541 plot_model(model, to_file="output.png") |
276 __import__('os').rename('output.png', 'output') | 542 os.rename('output.png', 'output') |
277 | 543 |
278 return 0 | 544 return 0 |
279 | 545 |
280 plotly.offline.plot(fig, filename="output.html", | 546 # save pdf file to disk |
281 auto_open=False) | 547 # fig.write_image("image.pdf", format='pdf') |
282 # to be discovered by `from_work_dir` | 548 # fig.write_image("image.pdf", format='pdf', width=340*2, height=226*2) |
283 __import__('os').rename('output.html', 'output') | |
284 | 549 |
285 | 550 |
286 if __name__ == '__main__': | 551 if __name__ == '__main__': |
287 aparser = argparse.ArgumentParser() | 552 aparser = argparse.ArgumentParser() |
288 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | 553 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) |