Mercurial > repos > bgruening > ml_visualization_ex
diff ml_visualization_ex.xml @ 4:6b94d76a1397 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 5b2ac730ec6d3b762faa9034eddd19ad1b347476"
author | bgruening |
---|---|
date | Mon, 16 Dec 2019 05:40:29 -0500 |
parents | 09efff9a5765 |
children | 222c02df5d55 |
line wrap: on
line diff
--- a/ml_visualization_ex.xml Thu Nov 07 05:43:19 2019 -0500 +++ b/ml_visualization_ex.xml Mon Dec 16 05:40:29 2019 -0500 @@ -4,11 +4,7 @@ <import>main_macros.xml</import> <import>keras_macros.xml</import> </macros> - <expand macro="python_requirements"> - <requirement type="package" version="3.1.1">plotly</requirement> - <requirement type="package" version="2.40.1">graphviz</requirement> - <requirement type="package" version="1.4.1">pydot</requirement> - </expand> + <expand macro="python_requirements"/> <expand macro="macro_stdio"/> <version_command>echo "@VERSION@"</version_command> <command> @@ -45,24 +41,42 @@ <param name="infile1" type="data" format="tabular" label="Select the dataset containing values for plotting learning curve." help="This dataset should be the output of tool model_validation->learning_curve."/> <param name="plot_std_err" type="boolean" truevalue="booltrue" falsevalue="boolfalse" optional="true" checked="false" label="Whether to plot standard error bar?"/> <param name="title" type="text" value="" optional="true" label="Plot title" help="Optional. If change is desired."/> + <param name="plot_format" type="select" label="The output format and library"> + <option value="html" selected="true">An interactive html by plotly</option> + <!--<option value="png">PNG image by matplotlib</option> TODO--> + </param> </when> <when value="pr_curve"> - <param name="infile1" type="data" format="tabular" label="Select the dataset containing true labels." help="No headers. For 2-class, single column contains both class labels (e.g. True and False). For multi-label, each column, hot-encoded, corresponds to one label."/> - <param name="infile2" type="data" format="tabular" label="Select the dataset containing predicted probabilities." help="No headers. For 2-class, sinle column or the first column contains scores for the positive label. For multi-label, each column corresponds to one label."/> + <param name="infile1" type="data" format="tabular" label="Select the dataset containing true labels." help="y_true. Headered. For 2-class, single column contains both class labels (e.g. True and False). For multi-label, each column, hot-encoded, corresponds to one label."/> + <param name="infile2" type="data" format="tabular" label="Select the dataset containing predicted probabilities." help="y_preds. Headered. For 2-class, sinle column or the first column contains scores for the positive label. For multi-label, each column corresponds to one label."/> <param name="pos_label" type="text" value="" optional="true" label="pos_label" help="The label of positive class. If not specified, it will be 1 by default."/> <param name="title" type="text" value="" optional="true" label="Plot title" help="Optional. If change is desired."/> + <param name="report_minimum_n_positives" type="integer" value="" optional="true" label="Report minimum number of positives" help="For mulitple label binary classifications, whose number of true postives is less than the threhold will be ignored."/> + <param name="plot_format" type="select" label="The output format and library"> + <option value="plotly_html" selected="true">An interactive html by plotly</option> + <option value="matplotlib_svg">SVG image by matplotlib</option> + </param> </when> <when value="roc_curve"> - <param name="infile1" type="data" format="tabular" label="Select the dataset containing true labels." help="No headers. For 2-class, single column contains both class labels (e.g. True and False). For multi-label, each column, hot-encoded, corresponds to one label."/> - <param name="infile2" type="data" format="tabular" label="Select the dataset containing predicted probabilities." help="No headers. For 2-class, sinle column or the first column contains scores for the positive label. For multi-label, each column corresponds to one label."/> + <param name="infile1" type="data" format="tabular" label="Select the dataset containing true labels." help="y_true. Headered. For 2-class, single column contains both class labels (e.g. True and False). For multi-label, each column, hot-encoded, corresponds to one label."/> + <param name="infile2" type="data" format="tabular" label="Select the dataset containing predicted probabilities." help="y_preds. Headered. For 2-class, sinle column or the first column contains scores for the positive label. For multi-label, each column corresponds to one label."/> <param name="pos_label" type="text" value="" optional="true" label="pos_label" help="The label of positive class. If not specified, it will be 1 by default."/> <param name="drop_intermediate" type="boolean" truevalue="booltrue" falsevalue="boolfalse" optional="true" checked="true" label="drop_intermediate" help="Whether to drop some suboptimal thresholds which would not appear on a plotted ROC curve."/> <param name="title" type="text" value="" optional="true" label="Plot title" help="Optional. If change is desired."/> + <param name="report_minimum_n_positives" type="integer" value="" optional="true" label="Report minimum number of positives" help="For mulitple label binary classifications, whose number of true postives is less than the threhold will be ignored."/> + <param name="plot_format" type="select" label="The output format and library"> + <option value="plotly_html" selected="true">An interactive html by plotly</option> + <option value="matplotlib_svg">SVG image by matplotlib</option> + </param> </when> <when value="rfecv_gridscores"> <param name="infile1" type="data" format="tabular" label="Select the dataset containing grid_scores from a fitted RFECV object." help="Headered. Single column. Could be Output from `estimator_attributes->grid_scores_`."/> <param name="steps" type="text" value="" optional="true" label="Step IDs" help="List, containing hover labels for each grid_score. For example: `list(range(10)) + [15, 20]`."/> <param name="title" type="text" value="" optional="true" label="Plot title" help="Optional. If change is desired."/> + <param name="plot_format" type="select" label="The output format and library"> + <option value="html" selected="true">An interactive html by plotly</option> + <!--<option value="png">PNG image by matplotlib</option> TODO--> + </param> </when> <when value="feature_importances"> <param name="infile_estimator" type="data" format="zip" label="Select the dataset containing fitted estimator/pipeline" /> @@ -72,17 +86,22 @@ </conditional> <param name="threshold" type="float" value="" optional="true" min="0." label="Threshold value" help="Features with importance below the threshold value will be ignored."/> <param name="title" type="text" value="" optional="true" label="Custom plot title" help="Optional."/> + <param name="plot_format" type="select" label="The output format and library"> + <option value="html" selected="true">An interactive html by plotly</option> + <!--<option value="png">PNG image by matplotlib</option> TODO--> + </param> </when> <when value="keras_plot_model"> <param name="infile_model_config" type="data" format="json" label="Select the JSON dataset containing configuration for a neural network model"/> <param name="title" type="hidden" value="" optional="true" label="Plot title" help="Optional. If change is desired."/> + <param name="plot_format" type="hidden" value="png" label="The output format and library"/> </when> </conditional> </inputs> <outputs> <data name="output" format="html" from_work_dir="output" label="${plotting_selection.plot_type} plot on ${on_string}"> <change_format> - <when input="plotting_selection.plot_type" value="keras_plot_model" format="png"/> + <when input="plotting_selection.plot_format" value="png" format="png"/> </change_format> </data> </outputs>