Mercurial > repos > bgruening > model_prediction
comparison model_prediction.xml @ 15:3bb1b688b0e4 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 9981e25b00de29ed881b2229a173a8c812ded9bb
author | bgruening |
---|---|
date | Wed, 09 Aug 2023 13:06:25 +0000 |
parents | 4aa701f5a393 |
children |
comparison
equal
deleted
inserted
replaced
14:29e4122c90de | 15:3bb1b688b0e4 |
---|---|
1 <tool id="model_prediction" name="Model Prediction" version="@VERSION@" profile="20.05"> | 1 <tool id="model_prediction" name="Model Prediction" version="@VERSION@" profile="@PROFILE@"> |
2 <description>predicts on new data using a preffited model</description> | 2 <description>predicts on new data using a preffited model</description> |
3 <macros> | 3 <macros> |
4 <import>main_macros.xml</import> | 4 <import>main_macros.xml</import> |
5 <import>keras_macros.xml</import> | 5 <import>keras_macros.xml</import> |
6 </macros> | 6 </macros> |
12 export HDF5_USE_FILE_LOCKING='FALSE'; | 12 export HDF5_USE_FILE_LOCKING='FALSE'; |
13 python '$__tool_directory__/model_prediction.py' | 13 python '$__tool_directory__/model_prediction.py' |
14 --inputs '$inputs' | 14 --inputs '$inputs' |
15 --infile_estimator '$infile_estimator' | 15 --infile_estimator '$infile_estimator' |
16 --outfile_predict '$outfile_predict' | 16 --outfile_predict '$outfile_predict' |
17 --infile_weights '$infile_weights' | |
18 #if $input_options.selected_input == 'seq_fasta' | 17 #if $input_options.selected_input == 'seq_fasta' |
19 --fasta_path '$input_options.fasta_path' | 18 --fasta_path '$input_options.fasta_path' |
20 #elif $input_options.selected_input == 'variant_effect' | 19 #elif $input_options.selected_input == 'variant_effect' |
21 --ref_seq '$input_options.ref_genome_file' | 20 --ref_seq '$input_options.ref_genome_file' |
22 --vcf_path '$input_options.vcf_file' | 21 --vcf_path '$input_options.vcf_file' |
27 </command> | 26 </command> |
28 <configfiles> | 27 <configfiles> |
29 <inputs name="inputs" /> | 28 <inputs name="inputs" /> |
30 </configfiles> | 29 </configfiles> |
31 <inputs> | 30 <inputs> |
32 <param name="infile_estimator" type="data" format="zip" label="Choose the dataset containing pipeline/estimator object" /> | 31 <param name="infile_estimator" type="data" format="h5mlm" label="Choose the dataset containing pipeline/estimator object" /> |
33 <param name="infile_weights" type="data" format="h5" optional="true" label="Choose the dataset containing weights for the estimator above" help="Optional. For deep learning only." /> | |
34 <param argument="method" type="select" label="Select invocation method"> | 32 <param argument="method" type="select" label="Select invocation method"> |
35 <option value="predict" selected="true">predict</option> | 33 <option value="predict" selected="true">predict</option> |
36 <option value="predict_proba">predict_proba</option> | 34 <option value="predict_proba">predict_proba</option> |
37 </param> | 35 </param> |
38 <conditional name="input_options"> | 36 <conditional name="input_options"> |
76 <outputs> | 74 <outputs> |
77 <data format="tabular" name="outfile_predict" /> | 75 <data format="tabular" name="outfile_predict" /> |
78 </outputs> | 76 </outputs> |
79 <tests> | 77 <tests> |
80 <test> | 78 <test> |
81 <param name="infile_estimator" value="best_estimator_.zip" ftype="zip" /> | 79 <param name="infile_estimator" value="best_estimator_.h5mlm" ftype="h5mlm" /> |
82 <param name="method" value="predict" /> | 80 <param name="method" value="predict" /> |
83 <param name="infile1" value="regression_X.tabular" ftype="tabular" /> | 81 <param name="infile1" value="regression_X.tabular" ftype="tabular" /> |
84 <param name="header1" value="true" /> | 82 <param name="header1" value="true" /> |
85 <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17" /> | 83 <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17" /> |
86 <output name="outfile_predict" file="model_pred01.tabular" /> | 84 <output name="outfile_predict" file="model_pred01.tabular" /> |
87 </test> | 85 </test> |
88 <test> | 86 <test> |
89 <param name="infile_estimator" value="keras_model04" ftype="zip" /> | 87 <param name="infile_estimator" value="train_test_eval_model01" ftype="h5mlm" /> |
90 <param name="infile_weights" value="train_test_eval_weights02.h5" ftype="h5" /> | |
91 <param name="method" value="predict" /> | 88 <param name="method" value="predict" /> |
92 <param name="infile1" value="regression_X.tabular" ftype="tabular" /> | 89 <param name="infile1" value="regression_X.tabular" ftype="tabular" /> |
93 <param name="header1" value="true" /> | 90 <param name="header1" value="true" /> |
94 <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17" /> | 91 <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17" /> |
95 <output name="outfile_predict"> | 92 <output name="outfile_predict" > |
96 <assert_contents> | 93 <assert_contents> |
97 <has_n_columns n="1" /> | 94 <has_n_columns n="1" /> |
98 <has_text text="70.2" /> | 95 <has_text text="71.0" /> |
99 <has_text text="61.2" /> | 96 <has_text text="61.3" /> |
100 <has_text text="74.2" /> | 97 <has_text text="83.7" /> |
101 <has_text text="65.9" /> | 98 <has_text text="69.2" /> |
102 <has_text text="52.9" /> | 99 <has_text text="51.8" /> |
103 </assert_contents> | 100 </assert_contents> |
104 </output> | 101 </output> |
105 </test> | 102 </test> |
106 </tests> | 103 </tests> |
107 <help> | 104 <help> |
108 <![CDATA[ | 105 <![CDATA[ |
109 **What it does** | 106 **What it does** |
110 | 107 |
111 Given a fitted estimator and new data sets, this tool outpus the prediction results on the data sets via invoking the estimator's `predict` or `predict_proba` method. | 108 Given a fitted estimator and new data sets, this tool outpus the prediction results on the data sets via invoking the estimator's `predict` or `predict_proba` method. |
112 | 109 |
113 For estimator, this tool supports fitted sklearn estimators (pickled) and trained deep learning models (model skeleton + weights). It predicts on three different dataset inputs, | 110 For estimator, this tool supports fitted sklearn estimators and trained deep learning models. It predicts on three different dataset inputs, |
114 | 111 |
115 - tabular | 112 - tabular |
116 | 113 |
117 - sparse | 114 - sparse |
118 | 115 |