Mercurial > repos > bgruening > music_deconvolution
view scripts/dendrogram.R @ 9:8cd2ecfa2e61 draft default tip
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/music/ commit 7b4e1e85d9d288a904444eb9fcb96bcdc856b9ff
author | bgruening |
---|---|
date | Wed, 06 Nov 2024 23:21:38 +0000 |
parents | fd7a16d073c5 |
children |
line wrap: on
line source
## suppressWarnings(suppressPackageStartupMessages(library(xbioc))) suppressWarnings(suppressPackageStartupMessages(library(MuSiC))) suppressWarnings(suppressPackageStartupMessages(library(reshape2))) suppressWarnings(suppressPackageStartupMessages(library(cowplot))) ## We use this script to generate a clustering dendrogram of cell ## types, using the prior labelling from scRNA. read_list <- function(lfile) { if (lfile == "None") { return(NULL) } return(read.table(file = lfile, header = FALSE, check.names = FALSE, stringsAsFactors = FALSE)$V1) } args <- commandArgs(trailingOnly = TRUE) source(args[1]) ## Perform the estimation ## Produce the first step information sub.basis <- music_basis(scrna_eset, clusters = celltypes_label, samples = samples_label, select.ct = celltypes) ## Plot the dendrogram of design matrix and cross-subject mean of ## realtive abundance ## Hierarchical clustering using Complete Linkage d1 <- dist(t(log(sub.basis$Disgn.mtx + 1e-6)), method = "euclidean") hc1 <- hclust(d1, method = "complete") ## Hierarchical clustering using Complete Linkage d2 <- dist(t(log(sub.basis$M.theta + 1e-8)), method = "euclidean") hc2 <- hclust(d2, method = "complete") if (length(data.to.use) > 0) { ## We then perform bulk tissue cell type estimation with pre-grouping ## of cell types: C, list_of_cell_types, marker genes name, marker ## genes list. ## data.to.use = list( ## "C1" = list(cell.types = c("Neutro"), ## marker.names=NULL, ## marker.list=NULL), ## "C2" = list(cell.types = c("Podo"), ## marker.names=NULL, ## marker.list=NULL), ## "C3" = list(cell.types = c("Endo","CD-PC","LOH","CD-IC","DCT","PT"), ## marker.names = "Epithelial", ## marker.list = read_list("../test-data/epith.markers")), ## "C4" = list(cell.types = c("Macro","Fib","B lymph","NK","T lymph"), ## marker.names = "Immune", ## marker.list = read_list("../test-data/immune.markers")) ## ) grouped_celltypes <- lapply(data.to.use, function(x) { x$cell.types }) marker_groups <- lapply(data.to.use, function(x) { x$marker.list }) names(marker_groups) <- names(data.to.use) cl_type <- as.character(scrna_eset[[celltypes_label]]) for (cl in seq_len(length(grouped_celltypes))) { cl_type[cl_type %in% grouped_celltypes[[cl]]] <- names(grouped_celltypes)[cl] } pData(scrna_eset)[[clustertype_label]] <- factor( cl_type, levels = c(names(grouped_celltypes), "CD-Trans", "Novel1", "Novel2")) est_bulk <- music_prop.cluster( bulk.eset = bulk_eset, sc.eset = scrna_eset, group.markers = marker_groups, clusters = celltypes_label, groups = clustertype_label, samples = samples_label, clusters.type = grouped_celltypes ) estimated_music_props <- est_bulk$Est.prop.weighted.cluster ## NNLS is not calculated here ## Show different in estimation methods ## Jitter plot of estimated cell type proportions methods_list <- c("MuSiC") jitter_fig <- Jitter_Est( list(data.matrix(estimated_music_props)), method.name = methods_list, title = "Jitter plot of Est Proportions", size = 2, alpha = 0.7) + theme_minimal() + labs(x = element_blank(), y = element_blank()) + theme(axis.text = element_text(size = 6), axis.text.x = element_blank(), legend.position = "none") plot_box <- Boxplot_Est(list( data.matrix(estimated_music_props)), method.name = methods_list) + theme_minimal() + labs(x = element_blank(), y = element_blank()) + theme(axis.text = element_text(size = 6), axis.text.x = element_blank(), legend.position = "none") plot_hmap <- Prop_heat_Est(list( data.matrix(estimated_music_props)), method.name = methods_list) + labs(x = element_blank(), y = element_blank()) + theme(axis.text.y = element_text(size = 6), axis.text.x = element_text(angle = -90, size = 5), plot.title = element_text(size = 9), legend.key.width = unit(0.15, "cm"), legend.text = element_text(size = 5), legend.title = element_text(size = 5)) } pdf(file = outfile_pdf, width = 8, height = 8) par(mfrow = c(1, 2)) plot(hc1, cex = 0.6, hang = -1, main = "Cluster log(Design Matrix)") plot(hc2, cex = 0.6, hang = -1, main = "Cluster log(Mean of RA)") if (length(data.to.use) > 0) { plot_grid(jitter_fig, plot_box, plot_hmap, ncol = 2, nrow = 2) } message(dev.off()) if (length(data.to.use) > 0) { write.table(estimated_music_props, file = outfile_tab, quote = F, col.names = NA, sep = "\t") }