Mercurial > repos > bgruening > music_inspect_eset
comparison scripts/dendrogram.R @ 0:2fed32b5aa02 draft
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/music/ commit 08c6fd3885bdfbf8b5c3f4dcc2d04729b577e3e1"
author | bgruening |
---|---|
date | Sun, 12 Sep 2021 19:48:26 +0000 |
parents | |
children | 817eb707bbf4 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:2fed32b5aa02 |
---|---|
1 ## | |
2 suppressWarnings(suppressPackageStartupMessages(library(xbioc))) | |
3 suppressWarnings(suppressPackageStartupMessages(library(MuSiC))) | |
4 suppressWarnings(suppressPackageStartupMessages(library(reshape2))) | |
5 suppressWarnings(suppressPackageStartupMessages(library(cowplot))) | |
6 ## We use this script to generate a clustering dendrogram of cell | |
7 ## types, using the prior labelling from scRNA. | |
8 | |
9 read_list <- function(lfile) { | |
10 if (lfile == "None") { | |
11 return(NULL) | |
12 } | |
13 return(read.table(file = lfile, header = FALSE, | |
14 stringsAsFactors = FALSE)$V1) | |
15 } | |
16 | |
17 args <- commandArgs(trailingOnly = TRUE) | |
18 source(args[1]) | |
19 | |
20 ## We then perform bulk tissue cell type estimation with pre-grouping | |
21 ## of cell types: C, list_of_cell_types, marker genes name, marker | |
22 ## genes list. | |
23 ## data.to.use = list( | |
24 ## "C1" = list(cell.types = c("Neutro"), | |
25 ## marker.names=NULL, | |
26 ## marker.list=NULL), | |
27 ## "C2" = list(cell.types = c("Podo"), | |
28 ## marker.names=NULL, | |
29 ## marker.list=NULL), | |
30 ## "C3" = list(cell.types = c("Endo","CD-PC","LOH","CD-IC","DCT","PT"), | |
31 ## marker.names = "Epithelial", | |
32 ## marker.list = read_list("../test-data/epith.markers")), | |
33 ## "C4" = list(cell.types = c("Macro","Fib","B lymph","NK","T lymph"), | |
34 ## marker.names = "Immune", | |
35 ## marker.list = read_list("../test-data/immune.markers")) | |
36 ## ) | |
37 grouped_celltypes <- lapply(data.to.use, function(x) { | |
38 x$cell.types | |
39 }) | |
40 marker_groups <- lapply(data.to.use, function(x) { | |
41 x$marker.list | |
42 }) | |
43 names(marker_groups) <- names(data.to.use) | |
44 | |
45 | |
46 ## Perform the estimation | |
47 ## Produce the first step information | |
48 sub.basis <- music_basis(scrna_eset, clusters = celltypes_label, | |
49 samples = samples_label, | |
50 select.ct = celltypes) | |
51 | |
52 ## Plot the dendrogram of design matrix and cross-subject mean of | |
53 ## realtive abundance | |
54 par(mfrow = c(1, 2)) | |
55 d <- dist(t(log(sub.basis$Disgn.mtx + 1e-6)), method = "euclidean") | |
56 ## Hierarchical clustering using Complete Linkage | |
57 hc1 <- hclust(d, method = "complete") | |
58 ## Plot the obtained dendrogram | |
59 plot(hc1, cex = 0.6, hang = -1, main = "Cluster log(Design Matrix)") | |
60 d <- dist(t(log(sub.basis$M.theta + 1e-8)), method = "euclidean") | |
61 ## Hierarchical clustering using Complete Linkage | |
62 hc2 <- hclust(d, method = "complete") | |
63 ## Plot the obtained dendrogram | |
64 pdf(file = outfile_pdf, width = 8, height = 8) | |
65 plot(hc2, cex = 0.6, hang = -1, main = "Cluster log(Mean of RA)") | |
66 | |
67 cl_type <- as.character(scrna_eset[[celltypes_label]]) | |
68 | |
69 for (cl in seq_len(length(grouped_celltypes))) { | |
70 cl_type[cl_type %in% grouped_celltypes[[cl]]] <- names(grouped_celltypes)[cl] | |
71 } | |
72 pData(scrna_eset)[[clustertype_label]] <- factor( | |
73 cl_type, levels = c(names(grouped_celltypes), | |
74 "CD-Trans", "Novel1", "Novel2")) | |
75 | |
76 est_bulk <- music_prop.cluster( | |
77 bulk.eset = bulk_eset, sc.eset = scrna_eset, | |
78 group.markers = marker_groups, clusters = celltypes_label, | |
79 groups = clustertype_label, samples = samples_label, | |
80 clusters.type = grouped_celltypes) | |
81 | |
82 write.table(est_bulk, file = outfile_tab, quote = F, col.names = NA, sep = "\t") | |
83 dev.off() |